AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习使用预训练模型 更多内容
  • 问答模型训练(可选)

    专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。 中量级:训练时长约为轻量级的3-5倍;

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    小。在深度学习中,微调用于改进训练模型的性能。 2 生成模型服务 将已有模型部署为模型服务 接入模型服务 支持通过API接入模型服务,同时支持将平台预置模型进行微调后,部署为模型服务,模型服务可以在创建Agent时使用或通过模型调用接口调用。 3 调测模型 通过调测模型,可检验

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard训练模型

    使用ModelArts Standard训练模型 模型训练使用流程 准备模型训练代码 准备模型训练镜像 创建调试训练作业 创建算法 创建生产训练作业 分布式模型训练 模型训练存储加速 增量模型训练 自动模型优化(AutoSearch) 模型训练高可靠性 管理模型训练作业

    来自:帮助中心

    查看更多 →

  • 场景介绍

    。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 LoRA微调LoRA(Low-Rank Adaptation):微调是一种用于调整大型预训练模型的高效微调技术。

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 模型训练

    weighted 是否使用增量学习 训练时是否使用增量学习,默认关闭。 是否进行集成学习 训练时是否进行集成学习,默认开启。开启后训练结果增加模型集成节点,训练结果中生成两个stacking类型的模型包。 单击图标,运行AutoML代码框内容。运行结果如图5所示。 AutoML模型训练过程中,

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 模型训练新建模型训练工程的时候,选择通用算法有什么作用? 使用训练模型进行在线推理的推理入口函数在哪里编辑? 通过数据集导入数据后,在开发代码中如何获取这些数据? 如何在模型训练时,查看镜像中Python库的版本? 如何在模型训练时,设置日志级别? 如何自定义安装python第三方库?

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 模型训练简介 创建模型训练工程 创建联邦学习工程 创建训练服务 创建超参优化服务 创建Tensorboard 打包训练模型 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 使用特征工程处理后生成的训练集进行模型训练。 创建训练任务(简易编辑器) 单击简易编辑器界面右上角的“训练”,弹出“训练配置”对话框,如图1所示。 图1 训练任务配置 在“训练配置”对话框中配置参数,如表1所示。 表1 训练配置参数配置 区域 参数名称 参数描述 任务说明

    来自:帮助中心

    查看更多 →

  • 模型训练

    ,单击“确认选择”,可以成功选择摄像机。 在首页导航栏,进入“模型训练”页面(选择摄像机型号后,模型训练自动解锁),单击“华为训练云服务”进入ModelArts模型训练平台。如果开发者有自己训练好的模型, 不需要进入该步骤。 其中, ModelArts是面向开发者的一站式AI开发

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型训练一般需要运行一段时间,等模型训练完成后,“开发应用>模型训练”页面下方显示查看训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型训练一般需要运行一段时间,等模型训练完成后,“开发应用>模型训练”页面下方显示查看训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 选择训练数据后,基于已标注的训练数据,选择训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在 自然语言处理 套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“无监督车牌检测工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 图1 训练模型 在“模型训练”页面,选择“训练模型”和“车辆场景”。

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    --fp16 开始训练。 本文是单机单卡训练使用训练脚本参数控制: GPUS_PER_NODE=1 NNODES=1 NODE_RANK=0 执行以下命令,开始训练。 nohup sh ./pretrain_gpt2.sh & 图3 开始训练 实时查看训练日志,监控程序。 tail

    来自:帮助中心

    查看更多 →

  • 模型训练

    多层嵌套异常检测学件 > 异常检测模型训练”,添加“异常检测模型训练”代码框。 图3 异常检测模型训练 单击“异常检测模型训练”代码框左侧的图标。等待模型训练完成。 可以通过屏幕打印信息,查看模型训练过程。屏幕会依次打印400个Epochs的模型训练评估结果。 父主题: 多层嵌套异常检测学件

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。

    来自:帮助中心

    查看更多 →

  • 训练模型

    当前服务提供安全帽检测预置模型“saved_model.pb”,请勾选训练模型。 确认信息后,单击“开始训练”。 图1 模型训练 模型训练一般需要运行一段时间,等模型训练完成后,“应用开发>模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“开发应用>模型训练”页面查看“训练详情”。

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示查看训练详情。 图1 训练模型 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不

    来自:帮助中心

    查看更多 →

  • 训练模型

    在“参数配置”填写“最大训练轮次”。“最大训练轮次”指模型迭代次数,即训练中遍历数据集的次数,参数范围[30,100]。 确认信息后,单击“训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示查看训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了