GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习 看gpu还是cpu 更多内容
  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型E CS GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Linux)

    (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Linux实例上通过脚本自动安装GPU驱动。 使用须知 本操作仅支持Linux操作系统。

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性 云服务器 GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

  • 功能总览

    CCE基于Volcano调度器提供多元算力资源调度及任务调度的能力,面向机器学习深度学习、生物信息学、基因组学及其他大数据应用场景提供完整的应用调度特性。 CCE支持CPU资源调度、GPU/NPU异构资源调度、在离线作业混合部署、CPU Burst弹性限流等调度策略,您可以根据业务特征设置调度策

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • CPU管控

    CPU管控 GS_263200040 错误码: Cgroup failed to attach (tid %d) into "%s" group: %s(%d). 解决方案:请确认控制组%s的路径是否已被更改或删除了。 level: WARNING 父主题: WLM

    来自:帮助中心

    查看更多 →

  • 模型训练

    计算节点规格 模型训练服务提供的计算节点资源,包括CPUGPU。 用户可以单击选定计算节点资源,并在“计算节点个数”中配置计算节点资源的个数。 计算节点个数 计算节点的个数。 1代表单节点计算 2代表分布式计算,开发者需要编写相应的调用代码。可使用内置的MoXing分布式训练加速框架进行训

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU)

    从0制作 自定义镜像 用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPUGPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux

    来自:帮助中心

    查看更多 →

  • 如何配置Pod使用GPU节点的加速能力?

    如何配置Pod使用GPU节点的加速能力? 问题描述 我已经购买了GPU节点,但运行速度还是很慢,请问如何配置Pod使用GPU节点的加速能力。 解答 方案1: 建议您将集群中GPU节点的不可调度的污点去掉,以便GPU插件驱动能够正常安装,同时您需要安装高版本的GPU驱动。 如果您的集

    来自:帮助中心

    查看更多 →

  • GPU设备检查

    GPU设备检查 功能 检查节点是否存在gpu设备,gpu驱动是否安装且运行正常。 语法 edgectl check gpu 参数说明 无 使用示例 检查节点GPU设备: edgectl check gpu 检查成功返回结果: +-----------------------+ |

    来自:帮助中心

    查看更多 →

  • GPU视图

    计算公式:节点上容器显存使用总量/节点上显存总量 GPU卡-显存使用量 字节 显卡上容器显存使用总量 GPU卡-算力使用率 百分比 每张GPU卡的算力使用率 计算公式:显卡上容器算力使用总量/显卡的算力总量 GPU卡-温度 摄氏度 每张GPU卡的温度 GPU-显存频率 赫兹 每张GPU卡的显存频率 GPU卡-PCle带宽

    来自:帮助中心

    查看更多 →

  • 查询服务详情

    status String 服务状态,取值包含: running:运行中,服务正常运行。 deploying:部署中,服务正在部署,包含打镜像和调度资源部署。 concerning:告警,后端实例部分存在异常。 failed:失败,服务部署失败,失败原因可以事件和日志标签页。 stopped:停止。

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    ch+CPU/GPU) PyTorch 镜像制作 自定义镜像训练 - 此案例介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPUGPU。 从0制作自定义镜像并用于训练(MPI+CPU/GPU) MPI

    来自:帮助中心

    查看更多 →

  • 方案概述

    架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • 安装GPU指标集成插件

    暂不支持CCE纳管后的GPU加速型实例。 前提条件 已安装GPU驱动,未安装lspci工具的云服务器影响GPU掉卡事件的上报。 如果您的弹性云服务器未安装GPU驱动,请参见GPU驱动概述安装GPU驱动。 安装GPU驱动需使用默认路径。 GPU驱动安装完后,需重启GPU加速型实例,否则可能

    来自:帮助中心

    查看更多 →

  • 使用SSH工具连接Notebook,服务器的进程被清理了,GPU使用率显示还是100%

    使用SSH工具连接Notebook,服务器的进程被清理了,GPU使用率显示还是100% 原因是代码运行卡死导致被进程清理,GPU显存没有释放;或者代码运行过程中内存溢出导致程序被清理,需要释放下显存,清理GPU,然后重新启动。为了避免进程结束引起的代码未保存,建议您每隔一段时间保存下代码输出至OBS桶或者容器

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    ,集群有4块GPU卡,TFJob1和TFJob2作业各自有4个Worker,TFJob1和TFJob2各自分配到2个GPU。但是TFJob1和TFJob2均需要4块GPU卡才能运行起来。这样TFJob1和TFJob2处于互相等待对方释放资源,这种死锁情况造成了GPU资源的浪费。 亲和调度问题

    来自:帮助中心

    查看更多 →

  • 弹性云服务器支持的操作系统监控指标(安装Agent)

    该指标用于统计测量对象其他占用CPU使用率。 单位:百分比 采集方式(Linux):其他CPU使用率=1- 空闲CPU使用率(%)- 内核空间CPU使用率- 用户空间CPU使用率。 采集方式(Windows):其他CPU使用率=1- 空闲CPU使用率(%)- 内核空间CPU使用率- 用户空间CPU使用率。

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 Me

    来自:帮助中心

    查看更多 →

  • 方案概述

    架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了