GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习 看gpu还是cpu 更多内容
  • 主持人选看

    主持人选 描述 该接口用于主持人轮询、主持人选多画面、主持人选会场操作。只适用于专业会议终端(如TE系列等)为主持人的场景。 调试 您可以在 API Explorer 中调试该接口。 接口原型 表1 接口原型 请求方法 PUT 请求地址 /v1/mmc/control/conferences/chairView

    来自:帮助中心

    查看更多 →

  • CPU调度

    CPU调度 CPU管理策略 增强型CPU管理策略 父主题: 调度

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 使用AutoGenome镜像

    描述 Notebook的简要描述。 镜像类型 选择“自定义”镜像。 工作环境 选择“autogenome”镜像。 CPU 设置CPU为8.0核。 GPU 设置GPU为1.0。 内存 设置内存大于50G。 存储路径 单击“存储路径”右侧文件夹图标,设置用于存储Notebook数据的

    来自:帮助中心

    查看更多 →

  • 训练任务

    八爪鱼自动驾驶平台的多机分布式训练功能可以帮助用户加快模型训练速度,提高训练效率,并支持更大规模的深度学习任务。通过多机分布式训练,用户可以将训练任务分配到多台计算机或 服务器 上并行进行,充分利用硬件资源,加快模型收敛速度,提高训练效果。平台支持多种深度学习框架,如TensorFlow、PyTorch等,并提供简单易用

    来自:帮助中心

    查看更多 →

  • 高性能调度

    应用场景5:在线离线作业混合部署 当前很多业务有波峰和波谷,部署服务时,为了保证服务的性能和稳定性,通常会按照波峰时需要的资源申请,但是波峰的时间可能很短,这样在非波峰时段就有资源浪费。另外,由于在线作业SLA要求较高,为了保证服务的性能和可靠性,通常会申请大量的冗余资源,因此,会导致资

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型E CS GPU驱动 操作场景 当GPU加速 云服务器 需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    了解SFS和OBS云服务 从 0 制作 自定义镜像 并用于训练(Pytorch+CPU/GPU) 本案例介绍如何从0开始制作镜像,并使用该镜像在ModelArts Standard平台上进行训练。镜像中使用的AI引擎是Pytorch,训练使用的资源是CPUGPU。 面向熟悉代码编写

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建工程 创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务和模型包。

    来自:帮助中心

    查看更多 →

  • 最新动态

    人脸检测技能 面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的清晰人脸上传至您的后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超的客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔的客流信息。 车牌识别技能

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型ECS的GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • 新建应用

    ${outputdir} ${input} 图3 镜像信息 选择CPUGPU类型和大小,选择内存大小,内存单位为GB。 CPU架构依赖于制作镜像过程中选择的系统类型,以及制作镜像时所需的生物信息学软件支持在X86还是ARM上运行。例如,GATK是基于X86指令集开发的生信软件,使

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 在ModelArts上如何提升训练效率并减少与OBS的交互?

    在ModelArts上如何提升训练效率并减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • volcano

    2 cce-gpu-topology-predicate GPU拓扑调度预选算法 - - cce-gpu-topology-priority GPU拓扑调度优选算法 - - cce-gpu 结合UCS的GPU插件支持GPU资源分配,支持小数GPU配置 说明: 小数GPU配置的前提条

    来自:帮助中心

    查看更多 →

  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云ECS的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal

    来自:帮助中心

    查看更多 →

  • GPU函数概述

    用户提供更加便捷、高效的GPU计算服务,有效承载AI模型推理、AI模型训练、音视频加速生产、图形图像加速加速工作负载。 GPU函数主要使用于:仿真、模拟、科学计算、音视频、AI和图像处理等场景下,使用GPU硬件加速,从而提高业务处理效率。 表1 GPU函数规格 卡型 vGPU 显存(GB)

    来自:帮助中心

    查看更多 →

  • 精度问题概述

    能的数值计算精度问题。 当用户将大语言模型或者其他类型深度神经网络的训练从GPU迁移到昇腾AI处理器时,可能出现以下不同现象的模型精度问题。一般包括: Loss曲线与CPU/GPU差异不符合预期。 验证准确度与CPU/GPU差异不符合预期。 在迁移到NPU环境下训练发现以上问题时

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性云服务器GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了