微服务引擎 CSE 

 

微服务引擎(Cloud Service Engine)提供服务注册、服务治理、配置管理等全场景能力;帮助用户实现微服务应用的快速开发和高可用运维。支持多语言、多运行时;支持双栈模式,统一接入和管理Spring Cloud、Apache ServiceComb(JavaChassis/GoChassis)、Dubbo侵入式框架和Istio非侵入式服务网格。

 
 

    分布式训练 更多内容
  • Finetune训练

    Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh

    来自:帮助中心

    查看更多 →

  • LoRA训练

    LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train

    来自:帮助中心

    查看更多 →

  • Controlnet训练

    启动SD1.5训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd /home/ma-user/diffusers sh diffusers_controlnet_train.sh Step3 启动sdxl训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd

    来自:帮助中心

    查看更多 →

  • 预训练

    训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。

    来自:帮助中心

    查看更多 →

  • 约束与限制

    旧版专属资源池均不支持设置训练作业优先级。 仅支持PyTorch和MindSpore框架的分布式训练和调测,如果MindSpore要进行多机分布式训练调试,则每台机器上都必须有8张卡。 使用 自定义镜像 创建训练作业时,镜像大小推荐15GB以内,最大不要超过资源池的容器引擎空间大小的

    来自:帮助中心

    查看更多 →

  • 高速网络栈

    图2 不同子网NPU卡间的网络 智能调度 AI大模型训练会将训练任务切分到多个计算节点进行分布式并行训练,会在节点之间引入复杂的通信行为,导致训练效率下降,智能调度通过考虑分布式训练通信的复杂性和集群带宽多级收敛的特性,根据大模型训练任务特征,并行度及可用资源拓扑信息,提供基于拓扑感

    来自:帮助中心

    查看更多 →

  • 分布式身份

    分布式身份 注册个人分布式身份 注册企业分布式身份 更新企业DID服务 查询分布式身份文档 父主题: API

    来自:帮助中心

    查看更多 →

  • (可选)配置镜像预热

    (可选)配置镜像预热 Lite Cluster资源池支持镜像预热功能,镜像预热可实现将镜像提前在资源池节点上拉取好,在推理及大规模分布式训练时有效缩短镜像拉取时间。本文将介绍如何配置镜像预热功能。 操作步骤 单击资源池名称,进入资源池详情。 单击左侧“配置管理”。 图1 配置管理

    来自:帮助中心

    查看更多 →

  • ModelArts

    使用JupyterLab打开Notebook调试代码 通过VS Code远程使用Notebook实例 算法管理 创建算法 训练模型 创建生产训练作业 创建调试训练作业 查看训练作业日志 分布式训练 创建AI应用 简介 管理AI应用 部署AI应用 部署为在线服务 部署为批量服务 规范示例 使用自定义镜像

    来自:帮助中心

    查看更多 →

  • 以PyTorch框架创建训练作业(新版训练)

    训练分布式训练),此处为单机情况使用默认值“1”。“log_export_path”用于指定用户需要上传日志的obs目录。 返回状态码“201 Created”,表示训练作业创建成功,响应Body如下所示: { "kind": "job", "metadata":

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 特征和算法确定后,可以开始训练模型。 训练模型 单击“模型选择”左下方的“训练模型”。 新增“训练模型”内容,如图1所示。 图1 训练模型 单击“训练模型”代码框左侧的图标,进行模型训练。 模型训练完成后,界面下方展示模型的评估效果。 第一列内容的含义如下所示: 0:标注为0的所有样本。可以理解为标签。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测学件服务

    来自:帮助中心

    查看更多 →

  • 训练模型

    “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 确认信息后,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。

    来自:帮助中心

    查看更多 →

  • 训练模组

    训练模组 场景描述 训练模组的接口。 接口方法 POST 接口URI https:// 域名 /apiaccess/C CS QM/rest/ccisqm/v1/semantickeywordtraining/trainTags,例如域名是service.besclouds.com 请求说明

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 自动学习训练作业创建失败 自动学习训练作业失败 父主题: 自动学习

    来自:帮助中心

    查看更多 →

  • 训练算法

    训练算法 添加自定义算法 添加自定义算法流程为“初始化训练算法 > 选择训练算法文件 > 上传训练算法文件”。具体操作步骤如下: 在左侧菜单栏中单击“训练服务 > 算法管理”。 单击“新建训练算法”,填写算法基本信息。 图1 新建训练算法 名称:包含中英文、数字、“_”“-”,不得超过64个字符。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自

    来自:帮助中心

    查看更多 →

  • 预训练

    统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权

    来自:帮助中心

    查看更多 →

  • 预训练

    nizer文件,具体请参见训练tokenizer文件说明。 Step2 创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd

    来自:帮助中心

    查看更多 →

  • Controlnet训练

    启动SD1.5训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd /home/ma-user/diffusers sh diffusers_controlnet_train.sh Step3 启动sdxl训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd

    来自:帮助中心

    查看更多 →

  • 预训练

    统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了