微服务引擎 CSE 

 

微服务引擎(Cloud Service Engine)提供服务注册、服务治理、配置管理等全场景能力;帮助用户实现微服务应用的快速开发和高可用运维。支持多语言、多运行时;支持双栈模式,统一接入和管理Spring Cloud、Apache ServiceComb(JavaChassis/GoChassis)、Dubbo侵入式框架和Istio非侵入式服务网格。

 
 

    分布式训练 更多内容
  • 分布式训练功能介绍

    创建多机多卡的分布式训练(DistributedDataParallel):介绍多机多卡数据并行分布式训练原理和代码改造点。 示例:创建DDP分布式训练(PyTorch+GPU):提供了分布式训练调测具体的代码适配操作过程和代码示例。 示例:创建DDP分布式训练(PyTorch

    来自:帮助中心

    查看更多 →

  • 分布式模型训练

    分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:

    来自:帮助中心

    查看更多 →

  • 创建单机多卡的分布式训练(DataParallel)

    创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上

    来自:帮助中心

    查看更多 →

  • 示例:创建DDP分布式训练(PyTorch+NPU)

    示例:创建DDP分布式训练(PyTorch+NPU) 本文介绍了使用训练作业的 自定义镜像 +自定义启动命令来启动PyTorch DDP on Ascend加速卡训练。 前提条件 需要有Ascend加速卡资源池。 创建训练作业 本案例创建训练作业时,需要配置如下参数。 表1 创建训练作业的配置说明

    来自:帮助中心

    查看更多 →

  • 示例:创建DDP分布式训练(PyTorch+GPU)

    示例:创建DDP分布式训练(PyTorch+GPU) 本文介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。 使用PyTorch预置框架功能,通过mp.spawn命令启动 使用自定义镜像功能 通过torch.distributed.launch命令启动 通过torch

    来自:帮助中心

    查看更多 →

  • 创建多机多卡的分布式训练(DistributedDataParallel)

    创建多机多卡的分布式训练(DistributedDataParallel) 本章节介绍基于PyTorch引擎的多机多卡数据并行训练。并提供了分布式训练调测具体的代码适配操作过程和代码示例。同时还针对Resnet18在cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。

    来自:帮助中心

    查看更多 →

  • 如何在ModelArts上获得RANK_TABLE_FILE进行分布式训练?

    _FILE进行分布式训练? ModelArts会帮用户生成RANK_TABLE_FILE文件,可通过环境变量查看文件位置。 在Notebook中打开terminal,可以运行如下命令查看RANK_TABLE_FILE: 1 env | grep RANK 在训练作业中,您可以

    来自:帮助中心

    查看更多 →

  • 在ModelArts创建分布式训练时如何设置NCCL环境变量?

    在ModelArts创建分布式训练时如何设置NCCL环境变量? ModelArts训练平台预置了部分NCCL环境变量,如表1所示。这些环境变量建议保持默认值。 表1 预置的环境变量 环境变量 说明 NCCL_SOCKET_IFNAME 指定通信的网卡名称。 NCCL_IB_GID_INDEX

    来自:帮助中心

    查看更多 →

  • 在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练

    在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 场景描述 ranktable路由规划是一种用于分布式并行训练中的通信优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    思想是在单个GPU上实现大规模模型并行训练,从而提高训练速度。DeepSpeed提供了一系列的优化技术,如ZeRO内存优化、分布式训练等,可以帮助用户更好地利用多个GPU进行训练 Accelerate是一种深度学习加速框架,主要针对分布式训练场景。Accelerate的核心思想是

    来自:帮助中心

    查看更多 →

  • 训练任务

    删除失败 - √ - 分布式训练任务 八爪鱼自动驾驶平台的多机分布式训练功能可以帮助用户加快模型训练速度,提高训练效率,并支持更大规模的深度学习任务。通过多机分布式训练,用户可以将训练任务分配到多台计算机或 服务器 上并行进行,充分利用硬件资源,加快模型收敛速度,提高训练效果。平台支持多种

    来自:帮助中心

    查看更多 →

  • Lite Cluster资源使用

    Lite Cluster资源使用 在Lite Cluster资源池上使用Snt9B完成分布式训练任务 在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 在Lite Cluster资源池上使用Snt9B完成推理任务

    来自:帮助中心

    查看更多 →

  • 模型训练

    中选择匹配的python语言版本“TF-1.8.0-python3.6”。 计算节点规格:模型训练的资源配置信息。 计算节点个数:是否进行分布式训练,请设置为“1”,即不进行分布式训练。 数据集超参:每行一个超参,单击超参行右侧的“增加”图标,新增2个超参。共需要设置3个数据集超

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    PU Share等特性的支持,进一步提升kubeflow批量训练和推理的效率。 实现典型分布式AI训练任务 下面将展示如何基于Kubeflow和Volcano,并使用MNIST数据集轻松的完成数字图像分类模型的分布式训练。 登录CCE控制台,单击集群名称进入一个集群。 在CCE集群上部署Volcano环境。

    来自:帮助中心

    查看更多 →

  • 创建训练作业

    在ModelArts创建分布式训练时如何设置NCCL环境变量? 在ModelArts使用自定义镜像创建训练作业时如何激活conda环境? 父主题: Standard训练作业

    来自:帮助中心

    查看更多 →

  • 使用基础镜像

    /scripts/obs_pipeline.sh 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install.sh则会在容器内安装依赖以及下载完整的代码。当训练作业结束后,对应的容器也会同步销毁。 图1 训练作业启动命令 父主题: 准备镜像

    来自:帮助中心

    查看更多 →

  • 多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢?

    多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢? TensorFlow框架分布式训练的情况下,会启动ps与worker任务组,worker任务组为关键任务组,会以worker任务组的进程退出码,判断训练作业是否结束。

    来自:帮助中心

    查看更多 →

  • 使用SDK调测多机分布式训练作业

    创建一个附属Notebook,与当前使用的Notebook组成分布式训练的两个worker。 初始化训练作业,将数据下载到local_path中。 执行训练任务,用户的代码需要将训练输出保存在4指定的local_path中。 将训练任务得到的输出上传到4指定的obs_path中,日志上传到7指定的log_url中。

    来自:帮助中心

    查看更多 →

  • 使用基础镜像

    _pretrain_13b.sh 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install.sh则会在容器内安装依赖以及下载完整的代码。当训练作业结束后,对应的容器也会同步销毁。 图1 训练作业启动命令 父主题: 准备镜像

    来自:帮助中心

    查看更多 →

  • 模型训练

    计算节点规格 模型训练服务提供的计算节点资源,包括CPU和GPU。 用户可以单击选定计算节点资源,并在“计算节点个数”中配置计算节点资源的个数。 计算节点个数 计算节点的个数。 1代表单节点计算 2代表分布式计算,开发者需要编写相应的调用代码。可使用内置的MoXing分布式训练加速框架进

    来自:帮助中心

    查看更多 →

  • 模型训练

    2代表分布式计算,开发者需要编写相应的调用代码。可使用内置的MoXing分布式训练加速框架进行训练训练算法需要符合MoXing程序结构。可参考如下文档:https://github.com/huaweicloud/ModelArts-Lab/tree/master/docs/moxing_api_doc 数据集参数配置

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了