微服务引擎 CSE 

 

微服务引擎(Cloud Service Engine)提供服务注册、服务治理、配置管理等全场景能力;帮助用户实现微服务应用的快速开发和高可用运维。支持多语言、多运行时;支持双栈模式,统一接入和管理Spring Cloud、Apache ServiceComb(JavaChassis/GoChassis)、Dubbo侵入式框架和Istio非侵入式服务网格。

 
 

    分布式训练框架 更多内容
  • 分布式执行框架

    分布式执行框架 GS_235100005 错误码: Stream plan check failed. Execution datanodes list of stream node[%d] mismatch in parent node[%d]. 解决方案:请使用INTERNAL

    来自:帮助中心

    查看更多 →

  • 以PyTorch框架创建训练作业(新版训练)

    调用查询训练作业详情接口使用刚创建的训练作业返回的id查询训练作业状态。 调用查询训练作业指定任务的日志(OBS链接)接口获取训练作业日志的对应的obs路径。 调用查询训练作业指定任务的运行指标接口查看训练作业的运行指标详情。 当训练作业使用完成或不再需要时,调用删除训练作业接口删除训练作业。 前提条件

    来自:帮助中心

    查看更多 →

  • 分布式模型训练

    分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:

    来自:帮助中心

    查看更多 →

  • 开发用于预置框架训练的代码

    有下载失败的风险。建议训练代码目录大小小于或等于50MB。 代码目录路径中的启动文件 代码目录路径中的启动文件作为训练启动的入口,当前只支持python格式。预置框架启动文件的启动流程说明请参见预置框架启动文件的启动流程说明。 训练输入路径参数 训练数据需上传至OBS桶或者存储至

    来自:帮助中心

    查看更多 →

  • 传感框架

    华为云帮助中心,为用户提供产品简介、价格说明、购买指南、用户指南、API参考、最佳实践、常见问题、视频帮助等技术文档,帮助您快速上手使用华为云服务。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。Deep

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    获取训练作业支持的AI预置框架 功能介绍 获取训练作业支持的AI预置框架。 调试 您可以在 API Explorer 中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/

    来自:帮助中心

    查看更多 →

  • 分布式训练功能介绍

    创建多机多卡的分布式训练(DistributedDataParallel):介绍多机多卡数据并行分布式训练原理和代码改造点。 示例:创建DDP分布式训练(PyTorch+GPU):提供了分布式训练调测具体的代码适配操作过程和代码示例。 示例:创建DDP分布式训练(PyTorch

    来自:帮助中心

    查看更多 →

  • 云端推理框架

    云端推理框架 推理服务 异步推理 模型仓库 模板管理 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢?

    多节点训练TensorFlow框架ps节点作为server会一直挂着,ModelArts是怎么判定训练任务结束?如何知道是哪个节点是worker呢? TensorFlow框架分布式训练的情况下,会启动ps与worker任务组,worker任务组为关键任务组,会以worker任务组的进程退出码,判断训练作业是否结束。

    来自:帮助中心

    查看更多 →

  • 使用SDK调测多机分布式训练作业

    tebook目录code_dir打包上传到obs_path中。 准备训练输出,与单机训练作业调试4相同。 查看训练支持的AI框架,与单机训练作业调试5相同。 保存当前Notebook为新镜像,与单机训练作业调试9相同。 Estimator初始化。 from modelarts.estimatorV2

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    训练代码包含训练作业的启动文件或启动命令、训练依赖包等内容。 当使用预置框架创建训练作业时,训练代码的开发规范可以参考开发用于预置框架训练的代码。 当使用 自定义镜像 创建训练作业时,训练代码的开发规范可以参考开发用于自定义镜像训练的代码。 准备训练框架(即训练镜像) 模型训练有多种训练框架来源,具体可以参考准备模型训练镜像。

    来自:帮助中心

    查看更多 →

  • 配置&编译框架简介

    配置&编译框架简介 Huawei LiteOS使用Kconfig文件配置系统,基于GCC/Makefile实现组件化编译。 不论是Linux下使用make menuconfig命令配置系统,还是Windows下使用Huawei LiteOS Studio进行图形化配置,Huawei

    来自:帮助中心

    查看更多 →

  • 创建单机多卡的分布式训练(DataParallel)

    创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上

    来自:帮助中心

    查看更多 →

  • 示例:创建DDP分布式训练(PyTorch+GPU)

    distributed.run命令启动 创建训练作业 方式一:使用PyTorch预置框架功能,通过mp.spawn命令启动训练作业。 创建训练作业的关键参数如表1所示。 表1 创建训练作业(预置框架) 参数名称 说明 创建方式 选择“自定义算法”。 启动方式 选择“预置框架”,引擎选择“PyTorc

    来自:帮助中心

    查看更多 →

  • 示例:创建DDP分布式训练(PyTorch+NPU)

    示例:创建DDP分布式训练(PyTorch+NPU) 本文介绍了使用训练作业的自定义镜像+自定义启动命令来启动PyTorch DDP on Ascend加速卡训练。 前提条件 需要有Ascend加速卡资源池。 创建训练作业 本案例创建训练作业时,需要配置如下参数。 表1 创建训练作业的配置说明

    来自:帮助中心

    查看更多 →

  • 产品优势

    ModelArts服务具有以下产品优势。 稳定安全的算力底座,极快至简的模型训练 支持万节点计算集群管理 大规模分布式训练能力,加速大模型研发 提供高性价比国产算力 多年软硬件经验沉淀,AI场景极致优化 加速套件,训练、推理、数据访问多维度加速 一站式端到端生产工具链,一致性开发体验 开

    来自:帮助中心

    查看更多 →

  • 预置框架启动文件的启动流程说明

    预置框架启动文件的启动流程说明 ModelArts Standard训练服务预置了多种AI框架,并对不同的框架提供了针对性适配,用户在使用这些预置框架进行模型训练时,训练的启动命令也需要做相应适配。 本章节详细介绍基于不同的预置框架创建训练作业时,如何修改训练的启动文件。 Asc

    来自:帮助中心

    查看更多 →

  • 数据治理框架

    数据治理 框架 数据治理框架 数据治理模块域 数据治理各模块域之间的关系

    来自:帮助中心

    查看更多 →

  • 数据治理框架

    数据治理框架 数据治理框架制定如下: 图1 数据治理框架 父主题: 数据治理框架

    来自:帮助中心

    查看更多 →

  • 语言和框架支持

    语言和框架支持 CodeArts IDE内置了强大的Java语言支持和编码辅助功能。此外,它还为JavaScript和TypeScript的Web开发提供了丰富的内置支持,为HTML、 CSS 、S CS S和JSON等Web技术也提供了出色的工具支持。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了