tensorflow框架 更多内容
  • 开发用于预置框架训练的代码

    keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url) x_train, x_test = x_train / 255.0, x_test / 255.0

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    Standard支持的AI框架 ModelArts Standard的开发环境Notebook、训练作业、模型推理(即AI应用管理和部署上线)支持的AI框架及其版本,请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore

    来自:帮助中心

    查看更多 →

  • 步骤2:框架配置

    步骤2:框架配置 框架配置和基本配置一样,需要您根据实际情况进行勾选配置,不同的配置会呈现不同的效果。 是否启用模板,默认不启用,如需启用,在下拉框中选择已创建的模板。创建模板具体操作请参考创建架构模板。 选择模板后,模板配置将自动带入包括“框架配置”和“生成策略”。 选择参考框架。

    来自:帮助中心

    查看更多 →

  • 执行框架转换

    执行框架转换 应用场景 针对企业中使用Dubbo等其他API框架的存量服务,AstroPro支持将代码统一转换为Spring MVC + OpenAPI的主流框架。转换后的框架将统一化,这有助于简化技术栈,降低技术多样性带来的复杂性,同时提高开发和运维团队的效率。 框架转换为Astro

    来自:帮助中心

    查看更多 →

  • 搭建ThinkPHP框架

    搭建ThinkPHP框架 简介 ThinkPHP遵循Apache2开源许可协议发布,是一个免费、开源、快速、简单的面向对象的轻量级PHP开发框架,是为了敏捷WEB应用开发和简化企业应用开发而诞生。本文介绍如何在华为云上使用CentOS 7.2操作系统的实例搭建ThinkPHP框架。 前提条件

    来自:帮助中心

    查看更多 →

  • 创建TFJob

    TFJob即Tensorflow任务,是基于Tensorflow开源框架的kubernetes自定义资源类型,有多种角色可以配置,能够帮助我们更简单地实现Tensorflow的单机或分布式训练。Tensorflow开源框架的信息详见:https://www.tensorflow.org

    来自:帮助中心

    查看更多 →

  • 使用TensorFlow进行线性回归

    使用TensorFlow进行线性回归 首先在FunctionGraph页面将tensorflow添加为公共依赖 图1 tensorflow添加为公共依赖 在代码中导入tensorflow并使用 import json import random # 导入 TensorFlow 依赖库

    来自:帮助中心

    查看更多 →

  • 卓越架构技术框架简介

    卓越架构技术框架简介 卓越架构技术框架(Well-Architected Framework)聚焦客户业务上云后的关键问题的设计指导和最佳实践。 以华为公司和业界最佳实践为基础,以韧性、安全性、性能效率、成本优化与卓越运营五个架构关注点为支柱,打造领先的卓越架构技术框架,支撑客户完

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如TensorflowSpark MLlibMXNetPyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    所示。 表1 ModelArts训练基础镜像列表 引擎类型 版本名称 PyTorch pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 TensorFlow tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18

    来自:帮助中心

    查看更多 →

  • ISDP产品功能整体框架

    ISDP产品功能整体框架 功能模块 角色说明

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.907) SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6.3.907) SD1.5&SDXL Koyha框架基于DevServer适配PyTorch NPU训练指导(6

    来自:帮助中心

    查看更多 →

  • moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune?

    率,在数据量不是很大的情况下,Fine Tune会是一个比较好的选择。 moxing.tensorflow包含所有的接口,对TensorFlow做了优化,里面的实际接口还是TensorFlow的原生接口。 当非MoXing代码中没有Adam名称范围时,需要修改非MoXing代码,在其中增加如下内容:

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    cce-obs-tensorflow persistentVolumeClaim: claimName: cce-obs-tensorflow containers: - name: container-0

    来自:帮助中心

    查看更多 →

  • ModelArts SDK、OBS SDK和MoXing的区别?

    SDK参考》 MoXing MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlowPyTorchMXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Fra

    来自:帮助中心

    查看更多 →

  • 分布式执行框架

    分布式执行框架 GS_235100005 错误码: Stream plan check failed. Execution datanodes list of stream node[%d] mismatch in parent node[%d]. 解决方案:请使用INTERNAL

    来自:帮助中心

    查看更多 →

  • 使用STS SDK(NUWA框架)

    使用STS SDK(NUWA框架) 初始化STS NUWA中已经自带了STS插件,只需要在nuwa-module-config.yml文件中进行如下配置,即可初始化STS。这种方式可以保证在其他中间件、Cloud Map之前初始化STS,保证组件启动顺序正确。 nuwa: security:

    来自:帮助中心

    查看更多 →

  • mox.file与本地接口的对应关系和切换

    mox.file:指MoXing框架中用于文件操作的接口,其与python接口一一对应关系。 tf.gfile:指MoXing文件操作接口一一对应的TensorFlow相同功能的接口,在MoXing中,无法自动将文件操作接口自动切换为TensorFlow的接口,下表呈现内容仅表示功能

    来自:帮助中心

    查看更多 →

  • 功能介绍

    集成VSCode开发工具,利用工具的便捷性,实现在线代码编写和调试。支持使用多种业界主流AI算法框架,如TensorflowPyTorchSpark_MLlibMXNet等,及华为自研AI框架MindSpore。提供丰富的CPU、GPU和华为自研Ascend芯片资源,进行模型训练。

    来自:帮助中心

    查看更多 →

  • JupyterLab常用功能介绍

    进入JupyterLab主页后,可在“Notebook”区域下,选择适用的AI引擎,单击后将新建一个对应框架的ipynb文件。 由于每个Notebook实例选择的工作环境不同,其支持的AI框架也不同,下图仅为示例,请根据实际显示界面选择AI框架。 图4 选择AI引擎并新建一个ipynb文件 新建的ipynb文件将呈现在左侧菜单栏中。

    来自:帮助中心

    查看更多 →

  • 分布式Tensorflow无法使用“tf.variable”

    分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了