tensorflow框架 更多内容
  • ModelArts中常用概念

    Cluster使用的都是专属资源池。 MoXing MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlowPyTorchMXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Fra

    来自:帮助中心

    查看更多 →

  • 使用Rainbow SDK(NUWA框架)

    使用Rainbow SDK(NUWA框架) 引入Rainbow SDK Rainbow SDK依赖Cloud Map的注册和发现能力,在引入Rainbow SDK之前,要先引入STS SDK和Cloud Map SDK,并完成STS和Cloud Map的初始化,具体请参见使用STS

    来自:帮助中心

    查看更多 →

  • 创建算法

    设置算法启动方式(预置框架) 图1 使用预置框架创建算法 需根据实际算法代码情况设置“代码目录”和“启动文件”。选择的预置框架和编写算法代码时选择的框架必须一致。例如编写算法代码使用的是TensorFlow,则在创建算法时也要选择TensorFlow。 表1 使用预置框架创建算法 参数 说明

    来自:帮助中心

    查看更多 →

  • 高性能调度

    的发展,这些框架都在相应的业务领域有着不可替代的作用,例如SparkTensorflow,Flink等。在业务复杂性能不断增加的情况下,单一的领域框架很难应对现在复杂的业务场景,因此现在普遍使用多种框架达成业务目标。但随着各个领域框架集群的不断扩大,以及单个业务的波动性,各个子

    来自:帮助中心

    查看更多 →

  • 将测试框架集成到项目中

    将测试框架集成到项目中 CodeArts IDE提供了与JUnit和TestNG测试框架的集成,让您轻松运行和调试Java测试用例。在开始之前,请确保为项目定义了JDK,如使用Java项目中所述。 您可以通过在pom.xml(对于Maven)或build.gradle(对于Gra

    来自:帮助中心

    查看更多 →

  • 使用STS SDK(Spring Cloud框架)

    使用STS SDK(Spring Cloud框架) 引入STS SDK 在pom.xml中添加STS SDK依赖。 <dependency> <groupId>com.huawei.wisecloud.sts</groupId> <artifact

    来自:帮助中心

    查看更多 →

  • 使用Spring Cloud框架实现应用开发

    使用Spring Cloud框架实现应用开发 Spring Cloud概述 准备工作 开发指导 实践案例

    来自:帮助中心

    查看更多 →

  • 将测试框架集成到项目中

    将测试框架集成到项目中 在您的项目中启动测试框架集成: 单击CodeArts IDE底部的“测试“()按钮来打开测试视图。 在测试视图中,单击“Configure Python Tests“按钮。 在弹出的窗口中选择测试框架来启动对应集成。 如果您选择“pytest“,Codea

    来自:帮助中心

    查看更多 →

  • 使用Cloud Map SDK(NUWA框架)

    loadingList=...,nuwa-gpaas-cloudmap,… 初始化Cloud Map 使用NUWA框架,只要增加对应配置,框架即会完成Cloud Map的初始化。 这些配置需要写到nuwa框架可以读到的文件里,一般是nuwa-xxx.properties,nuwa-xxx.yaml文件。因为Cloud

    来自:帮助中心

    查看更多 →

  • 以PyTorch框架创建训练作业(新版训练)

    "cpu_image_url": "aip/pytorch_1_8:train", "gpu_image_url": "aip/pytorch_1_8:train", "image_version": "pytorch_1.8.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    7-ubuntu_1804-x86_64 不同区域支持的AI引擎有差异,请以实际环境为准。 训练基础镜像详情(PyTorch) 介绍预置的PyTorch镜像详情。 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 使用Rainbow SDK(Spring Cloud框架)

    使用Rainbow SDK(Spring Cloud框架) 引入Rainbow SDK Rainbow SDK依赖Cloud Map的注册和发现能力,在引入Rainbow SDK之前,要先引入STS SDK和Cloud Map SDK,并完成STS和Cloud Map的初始化,具体请参见使用STS

    来自:帮助中心

    查看更多 →

  • TensorFlow在OBS写入TensorBoard到达5GB时停止

    signature check failed. This could be because of a time skew. Attempting to adjust the signer 原因分析 OBS限制单次上传文件大小为5GB,TensorFlow保存summary可能是本地缓

    来自:帮助中心

    查看更多 →

  • 什么是ModelArts

    要关心底层的技术。同时,ModelArts支持TensorflowMXNet等主流开源的AI开发框架,也支持开发者使用自研的算法框架,匹配您的使用习惯。 ModelArts的理念就是让AI开发变得更简单、更方便。面向不同经验的AI开发者,提供便捷易用的使用流程。例如,面向业务开

    来自:帮助中心

    查看更多 →

  • 模型调试

    为空。 model_type 是 String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/Scikit_Learn/XGBoost/MindSpore/Image/PyTorch。 model_algorithm 否 String 模型算法,表示

    来自:帮助中心

    查看更多 →

  • 方案概述

    部署1个Volcano插件,提供通用、可扩展、高性能、稳定的原生批量计算平台。 方案优势 丰富的计算框架支持 通过CRD提供了批量计算任务的通用API,通过提供丰富的插件及作业生命周期高级管理,支持TensorFlow,MPI,Spark等计算框架容器化运行在Kubernetes上。 高级调度 面向批量计算、高性

    来自:帮助中心

    查看更多 →

  • 统一角色桌面框架

    统一角色桌面框架 角色桌面介绍 角色桌面管理 创建角色桌面 编辑角色桌面 查看角色桌面 删除角色桌面 添加常用卡片 添加专属卡片 父主题: IPDCenter基础服务使用指南

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 产品术语

    产品术语 A AI应用市场 提供AI模型的交易市场,是AI消费者接触NAIE云服务的线上门户,是AI消费者对已上架的AI模型进行查看、试用、订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习、深度学习、模型训练的框架,如TensorflowSpark MLlib、MXNe

    来自:帮助中心

    查看更多 →

  • 使用Cloud Map SDK(Spring Cloud框架)

    使用Cloud Map SDK(Spring Cloud框架) 引入Cloud Map SDK 引入STS Cloud Map依赖STS认证能力,接入Cloud Map必须接入STS,具体请参考引入STS SDK。 引入Cloud Map 在pom.xml中添加Cloud Map

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了