GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    gpu云服务器 cuda 更多内容
  • 工作负载异常:GPU节点部署服务报错

    工作负载异常:GPU节点部署服务报错 问题现象 客户在CCE集群的GPU节点上部署服务出现如下问题: 容器无法查看显存。 部署了7个GPU服务,有2个是能正常访问的,其他启动时都有报错。 2个是能正常访问的CUDA版本分别是10.1和10.0 其他服务CUDA版本也在这2个范围内

    来自:帮助中心

    查看更多 →

  • 为什么exec进入容器后执行GPU相关的操作报错?

    为什么exec进入容器后执行GPU相关的操作报错? 问题现象: exec进入容器后执行GPU相关的操作(例如nvidia-smi、使用tensorflow运行GPU训练任务等)报错“cannot open shared object file: No such file or directory”。

    来自:帮助中心

    查看更多 →

  • 怎样查看GPU加速型云服务器的GPU使用率?

    怎样查看GPU加速 云服务器 GPU使用率? 问题描述 Windows Server 2012和Windows Server 2016操作系统的GPU加速 服务器 无法从任务管理器查看GPU使用率。 本节操作介绍了两种查看GPU使用率的方法,方法一是在cmd窗口执行命令查看GPU使用

    来自:帮助中心

    查看更多 →

  • 约束限制

    云容器实例支持使用NVIDIA GPU的驱动版本为460.106和418.126,您应用程序中使用的CUDA需满足如表3所示的配套关系。CUDA与驱动的配套关系来源于NVIDIA官网,详细信息请参见CUDA Compatibility。 表3 NVIDIA GPU驱动与CUDA配套关系 NVIDIA

    来自:帮助中心

    查看更多 →

  • CCE推荐的GPU驱动版本列表

    合适的NVIDIA驱动版本。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表1 GPU驱动支持列表 GPU型号 支持集群类型 机型规格 操作系统 Huawei Cloud

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 U CS On Premises GPU采用xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户定义使用的GPU数量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • 上传数据和算法至OBS(首次使用时需要)

    args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process

    来自:帮助中心

    查看更多 →

  • 使用GPU虚拟化

    设备。 init容器不支持使用GPU虚拟化资源。 GPU虚拟化支持显存隔离、显存与算力隔离两种隔离模式。单个GPU卡仅支持调度同一种隔离模式的工作负载。 使用GPU虚拟化后,不支持使用Autoscaler插件自动扩缩容GPU虚拟化节点。 XGPU服务的隔离功能不支持以UVM的方式申请显存,即调用CUDA

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    0-tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 MPI mindspore_1.3.0-cuda_10.1-py_3

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU)

    x86_64架构的主机,操作系统使用Ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行 自定义镜像 的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18

    来自:帮助中心

    查看更多 →

  • 如何处理用户使用场景与其选择的驱动、镜像不配套问题

    la驱动与CUDA软件的版本配套关系,可参考Tesla驱动及CUDA工具包获取方式。 处理方法 如果用户未安装驱动,请自行安装驱动,或切换带驱动的公共镜像,或使用驱动自动安装脚本安装驱动。 GPU加速型实例自动安装GPU驱动(Linux) GPU加速型实例自动安装GPU驱动(Windows)

    来自:帮助中心

    查看更多 →

  • 日志提示"No CUDA-capable device is detected"

    日志提示"No CUDA-capable device is detected" 问题现象 在程序运行过程中,出现如下类似错误。 1.‘failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected’

    来自:帮助中心

    查看更多 →

  • 创建GPU虚拟化应用

    创建GPU虚拟化应用 本文介绍如何使用GPU虚拟化能力实现算力和显存隔离,高效利用GPU设备资源。 前提条件 已完成GPU虚拟化资源准备。 如果您需要通过命令行创建,需要使用kubectl连接到集群,详情请参见通过kubectl连接集群。 约束与限制 init容器不支持进行GPU虚拟化。

    来自:帮助中心

    查看更多 →

  • Lite Server

    04内核自动升级? 哪里可以了解Atlas800训练服务器硬件相关内容 使用GPU A系列裸金属服务器有哪些注意事项? GPU A系列裸金属服务器如何更换NVIDIA和CUDA

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • 使用Nvidia-smi工具

    使用Nvidia-smi工具 为了支持查看GPU使用情况的场景,需要在镜像中注入nvidia-smi工具,根据购买的专属节点GPU驱动版本选择不同的nvidia-smi二进制文件。 nvidia-smi获取方式。 该二进制文件可以在nvidia官网,根据CUDA Toolkit版本选择下载对应版本的nvidia驱动包。

    来自:帮助中心

    查看更多 →

  • GPU函数管理

    GPU函数管理 Serverless GPU使用介绍 部署方式 函数模式

    来自:帮助中心

    查看更多 →

  • GPU故障处理

    GPU故障处理 前提条件 如需将GPU事件同步上报至AOM,集群中需安装云原生日志采集插件,您可前往AOM服务查看GPU插件隔离事件。 GPU插件隔离事件 当GPU显卡出现异常时,系统会将出现问题的GPU设备进行隔离,详细事件如表1所示。 表1 GPU插件隔离事件 事件原因 详细信息

    来自:帮助中心

    查看更多 →

  • 预置框架启动文件的启动流程说明

    args.cuda = not args.no_cuda and torch.cuda.is_available() hvd.init() if args.cuda: # Horovod: pin GPU to local rank. torch.cuda.set_device(hvd

    来自:帮助中心

    查看更多 →

  • 示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU)

    x86_64架构的主机,操作系统使用Ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了