自然语言处理 NLP

自然语言处理 NLP

商用服务调用费用低至¥1.5/千次

商用服务调用费用低至¥1.5/千次

    语义分割 深度学习 训练过程 更多内容
  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 查询预置算法

    2代表检测物体的类别和位置 3代表图像语义分割 4代表 自然语言处理 5图嵌入 model_precision String 模型精度描述。 model_size Long 模型大小,单位为字节(Byte)。 model_train_dataset String 模型训练数据集。 model_dataset_format

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deeps

    来自:帮助中心

    查看更多 →

  • 执行微调训练任务

    其中ASCEND_RT_VISIBLE_DEVICES=0,1,2,3指使用0-3卡执行训练任务。 训练成功标志 “***** train metrics *****”关键字打印 训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。 1、如训练过程中遇到“NPU out of memory”“Permission

    来自:帮助中心

    查看更多 →

  • 获取智能任务的信息

    1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deeps

    来自:帮助中心

    查看更多 →

  • 语义识别图元

    语义识别图元 图元展示 参数介绍 节点名称:标识节点名称。 描述:节点的详细说明信息。 上下文:用于筛选需要匹配的意图,提升匹配速度。 语义识别内容:需要进行语义识别匹配的具体内容,可以为字符串或当前节点之前已经有的变量,如果为空,表示直接识别客户的语音。 事件:表示如果在本流程

    来自:帮助中心

    查看更多 →

  • 场景介绍

    ,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。 支持将平台资产中心预置的部

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    例如: 增量训练 分布式训练 训练加速 训练高可靠性 查看训练结果和日志 查看训练作业详情 训练作业运行中或运行结束后,可以在训练作业详情页面查看训练作业的参数设置,训练作业事件等。 查看训练作业日志 训练日志用于记录训练作业运行过程和异常信息,可以通过查看训练作业日志定位作业运行中出行的问题。

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    yaml文件内容。 1、DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持于llama3系列 2、PPO训练暂不支持 ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型 全参full,配置如下: finetuning_type:

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    yaml文件内容。 1、DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持于llama3系列 2、PPO训练暂不支持 ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型 全参full,配置如下: finetuning_type:

    来自:帮助中心

    查看更多 →

  • 如何判断盘古大模型训练状态是否正常

    如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 创建工程

    开发环境 联邦学习模型训练运行环境信息,可通过下拉框切换当前环境。 进入代码编辑界面 创建联邦学习训练任务,详细请参考: 创建联邦学习训练任务(简易编辑器) 创建联邦学习训练任务(WebIDE) 删除联邦学习训练工程 模型训练工程描述 描述信息,支持单击图标,编辑描述信息。 对训练任务的

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 使用AutoGenome镜像

    输出路径。 模型训练:针对提供的数据和模型参数,AutoGenome会搜索得到最优的神经网络结构。训练过程经过模型搜索阶段和模型训练阶段,在模型搜索阶段,根据json文件中的配置参数,对于选定的模型参数会训练一定步数,搜索得到较好结果的参数进行后续训练训练过程中可选择在验证数据

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了