AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习预测数值 更多内容
  • BF16和FP16说明

    练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。

    来自:帮助中心

    查看更多 →

  • 创建联邦预测作业

    创建联邦预测作业 企业A单击“联邦预测 > 批量预测 > 创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用 TICS 联邦预测进行新数据离线预测

    来自:帮助中心

    查看更多 →

  • 创建实时预测作业

    实时预测作业必须选择训练FiBiNet模型的参与方计算节点发布的数据集。 创建训练模型时参数必须有"save_format": "SAVED_MODEL"。 创建联邦预测作业 实时预测作业在本地运行,目前仅支持深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理

    来自:帮助中心

    查看更多 →

  • 时序预测学件

    时序预测学件 创建项目 时序预测 父主题: 学件开发指南

    来自:帮助中心

    查看更多 →

  • 删除批量预测作业

    删除批量预测作业 删除批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面批量预测,查找待删除的作业,单击“删除”。 删除操作无法撤销,请谨慎操作。 图1 删除作业 父主题: 批量预测

    来自:帮助中心

    查看更多 →

  • 编辑批量预测作业

    编辑批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“联邦预测”页面,选择批量预测的Tab页,找到待开发的作业,单击“开发”。 图1 开发作业 在弹出的对话框中编辑“选择模型”。只允许选择模型,其它作业参数暂时不支持修改。

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。 2 生成模型服务 将已有模型部署为模型服务 接入模型服务 支持通过API接入模型服务,同时支持将平台

    来自:帮助中心

    查看更多 →

  • 如何判断盘古大模型训练状态是否正常

    ,或者学习率设置得过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或者减小学习率的方式来解决。 图3 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss保持平缓且保持高位不下降的原因可能是由于目标任务的难度较大,或者模型的学习率设置

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。

    来自:帮助中心

    查看更多 →

  • 分页查询智能任务列表

    19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。 24:基于tra

    来自:帮助中心

    查看更多 →

  • 联邦预测作业管理

    联邦预测作业管理 查询联邦预测作业列表 查询训练作业下的成功模型 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 科学计算大模型训练流程与选择建议

    期海洋智能预测模型。 全球中期天气要素预测模型、降水模型选择建议: 科学计算大模型的全球中期天气要素预测模型、降水模型,可以对未来一段时间的天气和降水进行预测,具备以下优势: 高时间精度:全球中期天气要素预测模型可以预测未来1、3、6、24小时的天气情况,降水模型可预测未来6小时

    来自:帮助中心

    查看更多 →

  • 在ModelArts训练得到的模型欠拟合怎么办?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 方案概述

    架构图 方案优势 落地性强:自主研发目标识别和深度学习融合的耘镜平台,目前已服务全国超过4亿亩耕地 AI能力强:方案结合华为云EI服务,地物自动识别效率超过95%,作物长势监测8天自动化更新,两周内气象预测准确率超85%,两天内气象预测准确率超95%(5*5km) 数据源丰富:解决

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 最新动态

    计算节点管理 2021年7月 序号 功能名称 功能描述 阶段 相关文档 1 联邦预测 新增支持联邦预测作业。联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 公测 联邦预测作业 2 联邦分析新增union all语法 安全多方计算MPC扩展语法支持union

    来自:帮助中心

    查看更多 →

  • 方案概述

    、模型数据。另一个用于存储数据集及数据集预测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测故障分析结果。 使用 函数工作流 FunctionGraph创建一个函数,进行数据处理并调用ModelArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了