AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练和测试 更多内容
  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索自适应模型调优),更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    els[i]]) plt.show() 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    确定。建议该参数“多样性”只设置1个。 多样性 影响输出文本的多样性,取值越大,生成文本的多样性越强。建议该参数“温度”只设置1个。 存在惩罚 介于-2.02.0之间的数字。正值会尽量避免重复已经使用过的词语,更倾向于生成新词语。 频率惩罚 介于-2.02.0之间的数字。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    希望了解华为人工智能产品人工智能云服务的使用、管理维护的人员 培训目标 完成该培训后,您将系统理解并掌握Python编程,人工智能领域的必备数学知识,应用广泛的开源机器学习/深度学习框架TensorFlow的基础编程方法,深度学习的预备知识深度学习概览,华为云EI概览,图像

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    该功能依赖UniAgent。UniAgent是统一数据采集Agent,支持脚本下发执行。 若E CS 未安装UniAgent,则无法免登录发送命令,详细内容,请参见为ECS安装UniAgent。 仅Linux操作系统的ECS支持深度诊断。 支持深度诊断的操作系统类型及版本。 操作系统类型 版本 CPU架构

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20) 训练轮数 1 10 20 测试集准确率

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 计费说明

    务,每套折合10人天投入工作量; 188,160.00 每套 计费模式 本服务为一次性计费方式。 变更配置 本服务如已启动交付,不支持退订变更,用户可以根据自身业务的实际情况购买;如因下单购买规格错误,可支持退订。 续费 本服务为一次性交付方式,需要续费。如有新的需求,可重新按需新下单购买。

    来自:帮助中心

    查看更多 →

  • 准备工作

    ch, 网络层在多个设备上的特殊安排巧妙的前向后向计算调度,可以最大程度减小设备等待(计算空泡),从而提高训练效率。 学习率预热 不同的学习率调度器(决定什么阶段用多大的学习率)有不同的学习率调度相关超参,例如线性调度可以选择从一个初始学习率lr-warmup-init开始预热

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    附录:指令微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框

    来自:帮助中心

    查看更多 →

  • 大数据分析

    均涌现出超高水平AI。人工智能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 ModelArts Standard模型训练提供容器化服务计算资源管理能力,负责建立管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用极致性能深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 业务测试和分析

    IP地址即数据库加密与访问控制的IP,代理端口即添加数据资产时所配置的代理端口。 在数据库工具上配置访问代理地址并连接。 主机端口请参照前面步骤,用户名密码根据数据库实际情况配置。以下图片仅为示例,请根据具体数据库工具配置代理访问连接。 图4 配置访问代理地址 在数据库工具上执行异常SQL语句。

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlowJupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    综上所述,BF16因其与FP32相似的数值范围稳定性,在大模型训练中提供了优势。而FP16则在计算效率内存使用方面有其独特的优点,但可能在数值范围稳定性方面略逊一筹。因此,选择哪种格式取决于具体的应用场景训练需求。 父主题: 训练脚本说明

    来自:帮助中心

    查看更多 →

  • 数据集

    流程。 如果用户需要使用自己的数据,可以参考新建数据集导入数据,创建新的数据集,并导入数据。 导入数据要求 建议训练数据测试数据分成两个实例,方便算法查找训练测试数据的位置。 训练数据可以是带标签或者不带标签的数据,测试数据一定是带标签的数据,方便评估模型执行效果。 查看学件项目预置的样例数据

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    行业经验,并更高效、准确地获取信息。 大模型的计量单位token指的是什么 令牌(Token)是指模型处理生成文本的基本单位。token可以是词或者字符的片段。模型的输入输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。 例如,在英文中,有些组合单词会根

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了