AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练集和测试集比例 更多内容
  • 使用AI原生应用引擎完成模型调优

    步骤一:创建微调数据 数据是模型微调的基础,AI原生应用引擎统一纳管训练模型的数据,将分散的数据进行集中式管理,从而节省了数据收集管理的成本。 在AI原生应用引擎的左侧导航栏选择“知识中心 > 微调数据”。 在“微调数据”页面,单击右上角“创建微调数据”。 在“创建微调

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    50 测试准确率 (%) 97.065 98.140 98.415 测试AUC 0.995 0.996 0.997 训练时长 (秒) 166 167 216 从上面两张表可以看出: (1)训练轮数对于联邦学习模型的性能影响不大,这主要是由于乳腺癌数据的分类相对简单,且数据经过了扩充导致的;

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    tensorflow version print(tf.__version__) 下载Fashion MNIST图片数据,该数据包含了10个类型共60000张训练图片以及10000张测试图片。 1 2 3 # download Fashion MNIST dataset fashion_mnist

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeedAccelerate都是针对深度学习训练加速的工具,但是它们的实现方式应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型大规模数据训练。De

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“FiBiNET”三种算法类型,XGBoost支持“分类”“回归”两种任务类型。 图2 新建作业 在弹出的界面进行数据选择,选择两方数据作为整个作业的数据,必须选择一个当前代理的数据,另一个数据可以来自空间中的任

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 时序预测

    并设置“测试数据分割量”,即从训练的数据尾部,分割出去的数据比例,示例为“0.2”。如果用户在数据界面同时上传了训练测试,可以选择“从数据读入”,并相应选择“测试数据测试数据实例”即可。 单击“加载数据”左侧的图标,加载训练测试。 运行完成后,可以在下

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    设置在并行训练中,每个微批次包含的数据批量大小,适当的数据批量大小能够确保训练各个阶段都能充分利用计算资源,提升并行效率。 数据配置 训练数据 选择训练模型所需的数据。要求数据经过发布操作,发布数据操作方法请参见发布数据。 资源配置 计费模式 选择训练模型所需的训练单元。

    来自:帮助中心

    查看更多 →

  • TPC-H测试集

    TPC-H测试 您可以通过命令生成方法生成TPC-H测试,也可以直接通过脚本生成方法生成,另我们已经给出完整的TPC-H测试供您参考。 由于版本差异,通过脚本生成的SQL测试,可能会存在部分SQL执行不成功的情况,请参考测试进行修正后执行。 命令生成方法 TPC-H 22个标准查询SQL可以用如下方法生成。

    来自:帮助中心

    查看更多 →

  • TPC-DS测试集

    TPC-DS测试 您可以通过命令生成方法生成TPC-DS测试,也可以直接通过脚本生成方法生成,另我们已经给出前面20个的TPC-DS测试供您参考。 命令生成方法 TPC-DS标准99个SQL查询语句可用如下方法生成: 准备工作。生成TPC-DS查询语句前需要修改query_templates目录下的文件:

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据进行学习训练生成新的数据的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域目标域数据进行学习训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 模型训练

    单击新增cell左侧的图标,加载两份higgs数据分别作为训练测试,如图3所示。 图3 加载训练 单击界面右上角的图标,选择“数据处理 > 数据 > 加载数据”。 新增“加载数据”内容。设置如下参数取值,其余参数保持默认值即可。 数据:从下拉框中选择“higgs”。 数据实例:从下拉框中选择“higgs_train_10k”。

    来自:帮助中心

    查看更多 →

  • 自动学习训练作业失败

    经过上述过滤后,如果数据不再满足第一点中关于训练数据的要求,则会导致训练失败或无法进行。建议完善数据后,再启动训练。 数据文件有以下限制: 如果您使用2u8g规格,测试建议数据文件应小于10MB。当文件大小符合限制要求,如果存在极端的数据规模(行数列数之积)时,仍可能会导致训练失败,建议的数据规模低于10000。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    的情况。 批量大小 一次训练所选取的样本数。 训练数据切分数量 将整个数据切分成多个子数据,依次训练,每个epoch训练一个子数据。 融合多值特征 将多值特征的多个embedding融合成一个embedding。 融合线性部分 是否使用模型架构中的线性部分。 固定哈希结构

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    字母或下划线开头。 数据配置 选择微调数据 单击“选择微调数据”,选择“我创建的”或“我收藏的”数据。 任务配置 资源池 选择执行任务的资源池,在下拉列表可以看到各资源池的可用卡数,根据实际情况选择。 单击“下一步”,分别参照表2表3配置基础参数、LoRA参数。 表2 基础参数配置说明

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    1:置信度偏低。 2:基于训练数据的聚类结果预测结果不一致。 3:预测结果训练同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据的特征分布存在较大偏移。 6:图像的高宽比与训练数据的特征分布存在较大偏移。 7:图像的亮度与训练数据的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线特征工程

    传入值。取值 RAM DOM。 训练数据占比 生成的结果中,训练占整个训练测试比例,默认0.7。 测试数据占比 生成的结果中,训练占整个训练测试比例,默认0.3。 开启调度 开启调度,按照指定的调度策略定期执行作业。 “调度周期”:调度周期可选“天”或“周”。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型 概要 准备工作 导入预处理训练数据 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 数据集

    样例数据:模型训练服务环境中预置的用户体验数据。包括鸢尾花原始测试、鸢尾花训练、鸢尾花测试、KPI 15分钟数据、KPI 60分钟数据、KPI异常检测数据。 其中鸢尾花原始测试、KPI 15分钟数据KPI 60分钟数据集中包括空值,用户可以通过特征工程进行数据修复,剔除空值。 本地上传-文件大小限制为60M,文本支持csv和txt

    来自:帮助中心

    查看更多 →

  • 排序策略

    保存根路径 单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机深度神经网络对于特征表达的学习,同时学习高阶低阶特征组合,从而达到准确地特征组合学习,进行精准推

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了