华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习是无监督吗 更多内容
  • 数据处理场景介绍

    数据清洗:数据清洗指对数据进行去噪、纠错或补全的过程。 数据清洗在数据校验的基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入的正样本和负样本,对数据进行清洗,保留用户想要的类别,去除用户不想要的类别。 数据选择:数据选择一般指从全量数据中选择数据子集的过程。

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 应用场景

    成标注。 数据处理 数据处理 数据湖 中数据管理的重要部分。可以通过数据处理,将用户的原始数据转换成目标模型数据格式。 时序数据标注 标注KPI异常检测非常重要的数据,可以提升监督学习训练过程中KPI检测准确率,在监督学习中做算法验证评估: 监督学习:使用标注工具对原始数据进行

    来自:帮助中心

    查看更多 →

  • 训练模型

    低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。 父主题: 监督车牌检测工作流

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    选择任务并进入任务详细页,点击视频进行播放。 右上角开关可控制自动播放,默认是否;如果为,则按章节顺序自动播放视频,下方显示每个章节的名称、缩略图可点击播放。 图3 单个课程学习 课程的章节都学习完毕后,点击“确认完成课程”完成课程学习。 操作步骤-手机端: 登录手机app,点击“我的”进入个人信息页面

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    1]之间,机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法一种基于矩阵分解的机器学习算法,能够自动进行二阶特征组合、学习特征之间的关系,无需人工经验干预,同时能够解决组合特征稀疏的问题。FM算法参数请参见因子分解机。 域感知因子分解机因子分解机

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    alpaca_en_demo 【可选】指定用于训练的数据集,数据集都放置在此处为identity,alpaca_en_demo表示使用了两个数据集,一个 identity,一个alpaca_en_demo。如选用定义数据请参考准备数据(可选)配置dataset_info.json文件 dataset_dir

    来自:帮助中心

    查看更多 →

  • 盘古大模型套件使用流程

    清洗数据集(可选) 发布数据集 对质量问题的数据集执行发布操作。 发布数据集 创建一个训练数据集 通过数据配比组合多个数据集,创建出用于模型训练的数据集。 创建一个训练数据集 模型训练 自监督训练 使用不含有标记的数据进行模型训练。 创建自监督微调训练任务 有监督训练 使用含有标记的数据

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    Pro>视觉套件”控制台选择“我的工作流>监督车牌检测工作流”新建应用,详细操作请见新建应用。您可以开发车牌检测模型,自主上传数据训练模型,实现车牌检测和识别功能。 图1 监督车牌检测工作流流程 表1 监督车牌检测工作流说明 流程 说明 详细指导 准备数据 在使用监督车牌检测工作流开发应用之

    来自:帮助中心

    查看更多 →

  • 产品优势

    的弹性伸缩能力。 。 免运维 运维成本 即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有跨AZ容灾能力。 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。

    来自:帮助中心

    查看更多 →

  • 查看训练任务详情与训练指标

    Loss曲线上升:Loss曲线上升的原因可能数据质量差,或学习率设置过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或减小学习率来解决。 图4 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss曲线平缓且保持高位不下降的原因可能目标任务的难度较大,或模型的学习率设置

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 ,选用ZeRO (Zero Redundancy Optimizer)优化器。 ZeRO-0,配置以下参数 deepspeed:

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 方案概述

    不断、事务自动回放。这种设计使得业务在切换过程中几乎感知,保证了业务的连续性和用户体验。 在数据可靠性方面, GaussDB 的数据持久性高达99.9999999999%,这一指标不仅远超业界标准,更确保了数据的相对安全。无论硬件故障、网络故障还是其他任何形式的故障,GaussD

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在所选数据集中只能有一个字段标签。 训练时需勾选使用的特征选项,勾选后可以跳过特征分箱,直接进行训练。 分箱方式包括等频分箱和等距分箱。等频分箱指经过计算使得每个分箱区间包含大致相等的实例数量;等距分箱指经过计算使得每个箱体的区间间隔保持一致。 需要至少勾选一个标签数据集特征才能进

    来自:帮助中心

    查看更多 →

  • 典型训练问题和优化策略

    典型训练问题和优化策略 什么情况下需要微调 什么情况下不建议微调 数据量很少,可以微调吗 数据量足够,但质量较差,可以微调吗 监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了