华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 是无监督 更多内容
  • 深度学习模型预测

    型权值。 is_dl4j_model 是否deeplearning4j的模型。 true代表deeplearning4j,false代表keras模型。 keras_model_config_path 模型结构存放在OBS上的完整路径。在keras中通过model.to_json()可得到模型结构。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    型权值。 is_dl4j_model 是否deeplearning4j的模型。 true代表deeplearning4j,false代表keras模型。 keras_model_config_path 模型结构存放在OBS上的完整路径。在keras中通过model.to_json()可得到模型结构。

    来自:帮助中心

    查看更多 →

  • 无监督车牌检测工作流

    监督车牌检测工作流 工作流介绍 准备数据 选择数据 训练模型 评估模型 部署服务 父主题: 视觉套件

    来自:帮助中心

    查看更多 →

  • 基本概念

    额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习监督学习机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)一种优化技术,用于在深度学习模型的微调过程中,只对模型

    来自:帮助中心

    查看更多 →

  • 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习

    的基础功能模型)来获取有监督场景。一个比较常见的方法,将监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段落、问题和答案三者组装为有监督数据。使用模型构建的优点数据丰富度更高,缺点成本较高。 当您将监督数据构建为有监督数据时,请尽可能保证数据

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    eepSpeed的核心思想在单个GPU上实现大规模模型并行训练,从而提高训练速度。DeepSpeed提供了一系列的优化技术,如ZeRO内存优化、分布式训练等,可以帮助用户更好地利用多个GPU进行训练 Accelerate一种深度学习加速框架,主要针对分布式训练场景。Accel

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    时序数据标注为数据工程师、数据科学家等提供的辅助标注工具。提供界面化数据查看、单点数据标注、连续时间戳数据标注、保存标注结果等功能。 数据标注对于KPI异常检测非常重要,可以有效提升监督学习训练过程中KPI异常检测的准确率,在监督学习中对模型做验证评估。 监督学习:使用标注工

    来自:帮助中心

    查看更多 →

  • 创建自监督微调训练任务

    ,批大小还与学习率相关。学习指每次更新参数时,沿着梯度方向移动的步长。一般来说,批大小和学习率成正比。如果批大小增大,学习率也相应增大;如果批大小减小,那么学习率也应减小。 训练轮数 1 1~50 完成全部训练数据集训练的次数。 学习率 0.0001 0~1 学习率用于控制每

    来自:帮助中心

    查看更多 →

  • 创建有监督训练任务

    ,批大小还与学习率相关。学习指每次更新参数时,沿着梯度方向移动的步长。一般来说,批大小和学习率成正比。如果批大小增大,学习率也相应增大;如果批大小减小,那么学习率也应减小。 训练轮数 1 1~50 完成全部训练数据集训练的次数。 学习率 0.0001 0~1 学习率用于控制每

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    该功能依赖UniAgent。UniAgent统一数据采集Agent,支持脚本下发和执行。 若E CS 未安装UniAgent,则无法免登录发送命令,详细内容,请参见为ECS安装UniAgent。 仅Linux操作系统的ECS支持深度诊断。 支持深度诊断的操作系统类型及版本。 操作系统类型

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    分类 分类找出一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的通过分类模型,将数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等。 聚类 聚类把一组数据按照相似性和差异性分为几个类别,其目的使得属于同

    来自:帮助中心

    查看更多 →

  • 场景介绍

    其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):强化学习过程中一个关键的组成部分。它的主要任务根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略 PPO强化学习(Proximal Policy

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 场景介绍

    型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):一种利用有标签数据进行模型训练的方法。 它基

    来自:帮助中心

    查看更多 →

  • 产品优势

    威胁检测服务 除威胁情报和规则基线检测外,还提供4类基于AI智能引擎的算法能力:IAM异常检测、DGA检测、DNS挖矿木马检测、DNS可疑 域名 检测。针对不同检测目标,利用有监督监督深度神经网络、马尔科夫等算法训练7种AI模型,结合特征规则、分布统计以及外部输入的威胁情报,综合构建检测系统,有效提升威胁分析效率和准确性。

    来自:帮助中心

    查看更多 →

  • 模型选择

    ,可以修改为用户认为更合适的值。 模型推荐:前面选择的数据有标签的数据,推荐算法xgboost监督的算法。模型推荐里面增加了超参搜索的功能,有给出参数取值的推荐区间。用户也可以根据实际情况修改。 如果推荐的监督的异常检测算法,可能会同时推荐几个算法。那模型训练的时候,针

    来自:帮助中心

    查看更多 →

  • 功能特性

    模型、监督学习模型、有监督学习模型实现对风险口令、凭证泄露、Token利用、异常委托、异地登录、未知威胁、暴力破解七大IAM高危场景进行智能检测。通过SVM、随机森林、神经网络等算法实现对隧道域名、DGA域名以及异常行为的智能检测。 AI引擎检测保持模型对真实数据的学习,保证数

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    自学记录统计的学员在知识库进行自学的学习数据 统计数据统计的具体培训资源(实操作业、考试等)的学员学习数据 父主题: 培训管理

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了