AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习模型总结 更多内容
  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 最新动态

    人脸检测技能 面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的清晰人脸上传至您的后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超的客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔的客流信息。 车牌识别技能

    来自:帮助中心

    查看更多 →

  • 经验总结:SQL语句改写规则

    经验总结:SQL语句改写规则 根据数据库的SQL执行机制以及大量的实践,总结发现:通过一定的规则调整SQL语句,在保证结果正确的基础上,能够提高SQL执行效率。如果遵守这些规则,常常能够大幅度提升业务查询效率。 使用union all代替union union在合并两个集合时会执行去重操作,而union

    来自:帮助中心

    查看更多 →

  • 功能介绍

    针对客户的特定场景需求,定制垂直领域的 语音识别 模型,识别效果更精确。 录音文件识别 对于录制的长语音进行识别,转写成文字,提供不同领域模型,具备良好的可扩展性,支持热词定制。 产品优势 高识别率 基于深度学习技术,对特定领域场景的语音识别进行优化,识别率达到业界领先。 稳定可靠 成功

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 准备工作

    超参说明 超参 说明 学习率 影响模型收敛程度,决定了模型在每次更新权重时所采用的步长。学习率过高,模型可能会过度调整权重,导致不稳定的训练过程;如果学习率过低,模型训练速度会变慢,甚至陷入局部最优。 batch size 影响训练速度,有时候也会影响模型精度。 micro batch

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • 应用场景

    据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspee

    来自:帮助中心

    查看更多 →

  • 方案概述

    获取模型网络权重,进行权重格式转换;支持客户进行数据集封装,打通适配模型的训练、微调、在线推理流程;支持客户进行模型的并行化改造,处理适配模型运行过程中的技术问题。 模型迁移与调优支持:调研客户业务场景,支持客户分析模型代码结构,分析迁移可行性,设计迁移方案。支持客户进行模型迁移

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据流的分离

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

  • 经验总结:SQL语句改写规则

    经验总结:SQL语句改写规则 根据数据库的SQL执行机制以及大量的实践,总结发现:通过一定的规则调整SQL语句,在保证结果正确的基础上,能够提高SQL执行效率。如果遵守这些规则,常常能够大幅度提升业务查询效率。 使用union all代替union union在合并两个集合时会执行去重操作,而union

    来自:帮助中心

    查看更多 →

  • 经验总结:SQL语句改写规则

    经验总结:SQL语句改写规则 根据数据库的SQL执行机制以及大量的实践,总结发现:通过一定的规则调整SQL语句,在保证结果正确的基础上,能够提高SQL执行效率。如果遵守这些规则,常常能够大幅度提升业务查询效率。 使用union all代替union union在合并两个集合时会执行去重操作,而union

    来自:帮助中心

    查看更多 →

  • 经验总结:SQL语句改写规则

    经验总结:SQL语句改写规则 根据数据库的SQL执行机制以及大量的实践,总结发现:通过一定的规则调整SQL语句,在保证结果正确的基础上,能够提高SQL执行效率。如果遵守这些规则,常常能够大幅度提升业务查询效率。 使用union all代替union union在合并两个集合时会执行去重操作,而union

    来自:帮助中心

    查看更多 →

  • 经验总结:SQL语句改写规则

    经验总结:SQL语句改写规则 根据数据库的SQL执行机制以及大量的实践,总结发现:通过一定的规则调整SQL语句,在保证结果正确的基础上,能够提高SQL执行效率。如果遵守这些规则,常常能够大幅度提升业务查询效率。 使用union all代替union。 union在合并两个集合时会执行去重操作,而union

    来自:帮助中心

    查看更多 →

  • 经验总结:SQL语句改写规则

    经验总结:SQL语句改写规则 根据数据库的SQL执行机制以及大量的实践,总结发现:通过一定的规则调整SQL语句,在保证结果正确的基础上,能够提高SQL执行效率。如果遵守这些规则,常常能够大幅度提升业务查询效率。 使用union all代替union union在合并两个集合时会执行去重操作,而union

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、

    来自:帮助中心

    查看更多 →

  • 产品功能

    因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算 节点 数据

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了