AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习的模型结构 更多内容
  • 深度学习模型预测

    Theano 作为后端运行,导入来自Keras神经网络模型,可以借此导入Theano、Tensorflow、Caffe、CNTK等主流学习框架模型。 语法格式 1 2 3 4 5 6 7 -- 图像分类, 返回预测图像分类类别id DL_IMAGE_MAX_PREDICTION_INDEX(field_name

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    Theano 作为后端运行,导入来自Keras神经网络模型,可以借此导入Theano、Tensorflow、Caffe、CNTK等主流学习框架模型。 语法格式 1 2 3 4 5 6 7 -- 图像分类, 返回预测图像分类类别id DL_IMAGE_MAX_PREDICTION_INDEX(field_name

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。D

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 模型包结构介绍

    模型结构介绍 创建模型时,如果是从OBS中导入元模型,则需要符合一定模型包规范。 模型包规范适用于单模型场景,如果是多模型场景(例如含有多个模型文件)推荐使用 自定义镜像 方式。 ModelArts推理平台不支持AI引擎,推荐使用自定义镜像方式。 请参考创建模型自定义镜像规范

    来自:帮助中心

    查看更多 →

  • 功能介绍

    提升模型训练速度,满足海量样本数据加速训练需求。 图17 支持训练过程多个GPU运行指标监控 支持在线模型评估,在不进行模型发布前提下直接查看模型解译效果,支持上传文件、WMTS和WMS图层进行模型评估。 集成主流深度学习框架,包括PyTorch,TensorFlow,J

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习方式帮助不具备算法开发能力业务开发者实现算法开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练参数自动化选择和模型自动调优自动学习功能,让零AI基础业务开发者可快速完成模型训练和部署。 M

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    放,对用户问泛化能力越强,识别准确率越低。 针对历史版本模型,可以根据当前模型调节直接返回答案阈值。 在“模型管理”页面,在模型列表操作列单击“调整阈值”。 图6 调整阈值 如下图所示,您可以根据实际需求,选择合适阈值,然后单击“确定”。 用户问法与标准问相似度大于直接回答阈值时,直接返回相应答案。

    来自:帮助中心

    查看更多 →

  • 调优前:学习表结构设计

    表的存储模型选择是表定义第一步。业务属性是表存储模型决定性因素,根据下表选择适合当前业务存储模型。 一般情况下,如果表字段比较多(大宽表),查询中涉及到列不多情况下,适合列存储。如果表字段个数比较少,查询大部分字段,那么选择行存储比较好。 存储模型 适用场景 行存 点查询(返回记录少,基于索引的简单查询)。

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供一站式深度学习平台服务,内置大量优化网络模型,以便捷、高效方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelAr

    来自:帮助中心

    查看更多 →

  • 如何用ModelArts训练基于结构化数据的模型?

    如何用ModelArts训练基于结构化数据模型? 针对一般用户,ModelArts提供自动学习预测分析场景来完成结构化数据模型训练。 针对高阶用户,ModelArts在开发环境提供创建Notebook进行代码开发功能,在训练作业提供创建大数据量训练任务功能;用户在开发、训练流程

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    在特定场景中,可替代人快速生成视频内容,以提升内容生成效率。 算法目的意图 通过学习语音与表情基系数关系,实现使用语音生成视频能力。在使用数据人形象生成视频场景,包括短视频制作、直播、智能交互等,可快速生成不同台词视频内容。

    来自:帮助中心

    查看更多 →

  • 结构

    结构结构”视图会显示当前活动Python文件符号树,并提供多种排序、分组和过滤功能。要打开“结构”视图,请在右侧活动栏中单击“结构”,或按下 “Ctrl+Shift+F10”。 要快速导航到某个符号,请单击“结构”视图列表中相应项。使用“结构”视图工具栏按钮可以对显示的符号进行排序、过滤和分组。

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    深度诊断E CS 操作场景 ECS支持操作系统深度诊断服务,提供GuestOS内常见问题自诊断能力,您可以通过方便快捷自诊断服务解决操作系统内常见问题。 本文介绍支持深度诊断操作系统版本以及诊断结论说明。 约束与限制 该功能依赖云运维中心(Cloud Operations

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    Estimation,即梯度未中心化方差)进行综合考虑,依次计算出更新步长。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    提供更好稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存占用,对模型准确性影响在大多数情况下较小。与BF16相比在处理非常大或非常小数值时遇到困难,导致数值精度损失。 综上所述,BF16因其与F

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据清洗:数据清洗是指对数据进行去噪、纠错或补全过程。 数据清洗是在数据校验基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入正样本和负样本,对数据进行清洗,保留用户想要类别,去除用户不想要类别。 数据选择:数据选择一般是指从全量数据中选择数据子集过程。 数据可以通过

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    提供更好稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存占用,对模型准确性影响在大多数情况下较小。与BF16相比在处理非常大或非常小数值时遇到困难,导致数值精度损失。 综上所述,BF16因其与F

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    提供更好稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存占用,对模型准确性影响在大多数情况下较小。与BF16相比在处理非常大或非常小数值时遇到困难,导致数值精度损失。 综上所述,BF16因其与F

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了