AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习的模型结构 更多内容
  • 什么是医疗智能体

    智能体将深度学习算法及药物分析服务融入药物研发过程,让药企能更快速高效地完成药物研发,节约研发成本。 产品优势 提供开放、易于扩展平台架构。 提供端到端AI赋能平台加速AI研发和应用。 提供针对医疗行业AI自动建模工具。 提供医疗领域专业预置资产,提升企业效率。 内

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量 定义每个特征切分点数量,数量越多,准确率越高,计算时间越长。取值范围为5~10的整数。

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习图像分类或物体检测算法时,标注完成数据在进行模型训练后,训练结果为图片异常。针对不同异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能不利影响。 模型开发:模型开发是大模型项目中核心阶段,通常包括以下步骤: 选择合适模型:根据任务目标选择适当模型模型训练:使用处理后数据集训练模型。 超参数调优:选择合适学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好的性能。

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    智能问答机器人 支持基础版、高级版、专业版、旗舰版四种规格,各规格差异如表1所示。 表1 机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    V2025预测,到2025年,企业人工智能利用率将达到86%。新需求,新技术,新产品,成功解决方案和具备对应能力开发工程师、规划设计人员和工程人员,对于这场变革和企业蜕变更是缺一不可关键。基于此,华为云推出了华为企业人工智能高级开发者培训专业服务,旨在培养具有图像处理、语

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集特征数据不够理想,而此数据集数据类别和一份理想数据集部分重合或者相差不大时候,可以使用特征迁移功能,将理想数据集特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计是以任务形式分派学员学习数据 自学记录统计是学员在知识库进行自学学习数据 统计数据统计是具体培训资源(实操作业、考试等)学员学习数据 父主题: 培训管理

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 执行作业

    常规配置:通过界面点选算法使用常规参数,具体支持参数请参考表1。 表1 常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50的整数。

    来自:帮助中心

    查看更多 →

  • 自动学习生成的模型,存储在哪里?支持哪些其他操作?

    自动学习生成模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成模型,不支持下载使用。 图1 自动学习生成模型

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型训练,并利用该模型完成简单图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 应用场景

    断出不合规语音内容。 场景优势: 实时性:可以实时监测和分析直播间中语音内容,保障直播间秩序和安全。 支持特殊声音识别:支持特殊声音识别模型,如娇喘、呻吟、敏感声纹等。 社交语音消息 在社交语音消息平台上实时对用户发送语音消息进行审核,及时判断出包含不良内容语音消息,帮

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角图标中“数据处理”菜单下面的数据处理算子。 模型包 将模型

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 计费说明

    对业务场景为极特殊复杂场景起因或政府单位进行需求调研分析,简单场景工作量预计不超过30人天 1,200,000.00 每套 算法设计与优化服务 AI算法设计与优化-基础版 对人工智能场景为简单场景企业或政府单位进行算法设计,形成可帮助算法能力较弱技术人员完成后续开发技术方案报告。简单场景工作量预计不超过17人天

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我课堂 MOOC课程 我考试

    来自:帮助中心

    查看更多 →

  • 方案概述

    型号等组合全栈支持能力,确保模型在不同硬件平台上高效运行。 高效模型迁移适配:通过自动化迁移工具和专业技术支持,实现模型从GPU平台快速、无缝地迁移到昇腾NPU平台,确保模型在新平台上性能和精度不受影响; 多维度性能调优:提供从算子、内存、通信、调度等多维度调优手段,提

    来自:帮助中心

    查看更多 →

  • 合约结构

    合约结构 go语言合约即一个Go文件,包含包声明、依赖包导入、智能合约结构体定义和方法定义。创建好合约文件后就可以进行函数开发等操作。 合约结构中,仅合约结构体可以更改,package名和方法签名不可更改。 合约结构如下: package usercontract // 引入必要的包

    来自:帮助中心

    查看更多 →

  • 合约结构

    合约结构 Go语言合约由合约文件及依赖包构成,包含包声明、依赖包导入、智能合约结构体定义和方法定义。 合约文件中,用户可自定义结构体以及合约函数。以下内容不可更改: package名:package usercontract 函数签名:NewSmartContract()、Init(stub

    来自:帮助中心

    查看更多 →

  • 基本结构

    AS相当于DECLARE。即便没有变量声明部分,关键字AS也必须保留。 执行部分:过程及SQL语句,程序主要部分。必选。 BEGIN 执行异常部分:错误处理。可选。 EXCEPTION 结束。必选。 END; / 禁止在PL/SQL块中使用连续Tab,连续Tab可能会造成在使用gsql

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了