AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习每次训练结果不一样 更多内容
  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    临的实际困难,尤其是高昂的模型训练与部署成本,这往往成为创意落地的阻碍。通过大量开发者实践,针对主流昇腾云开源大模型,沉淀最佳的算力组合方案,为开发者在开发模型的最后一步,提供最佳实践的算力方案、实践指南和文档,节省开发者学习和试错资金成本,提升学习和开发效率。 父主题: 功能介绍

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    restartPolicy: OnFailure 提交作业,开始训练。 kubectl apply -f mnist.yaml 等待训练作业完成,通过Kubeflow的UI可以查询训练结果信息。至此就完成了一次简单的分布式训练任务。Kubeflow的借助TFJob简化了作业的配置。Vo

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    问答模型训练管理 专业版 适合企业复杂对话流程,需要多轮对话的场景,包括以下功能模块: 包含“高级版”功能,以及以下功能。 多轮技能管理 知识共享 应用授权 旗舰版 适用于对机器人答准率有高要求,数据样本大的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练训练作业的预置框架介绍

    来自:帮助中心

    查看更多 →

  • 安全沙箱机制

    发起方获取某个横向联邦训练作业的训练结果路径。 图1 获取作业结果路径 发起方执行恶意脚本,试图篡改所获取的路径中的作业训练结果。 图2 执行恶意脚本 发起方执行恶意脚本后,由于安全沙箱确保每个横向联邦作业都是隔离的,当某个作业想去访问或篡改其他作业相关的文件时,无法找到作业执行结果文件,因此

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • AI模型

    每人最多可以创建100个模型,每次使用模型时,最多可以使用10个。 查看模型列表 在AI模型页签下支持查看创建的所有模型。包括模型的名称、模型类型、基模型来源、创建时间、完成时间、创建者、状态、组织共享、操作等信息。 图2 查看属性模型列表 查看模型指标 查看loss值:loss代表模型训练的损失变化。

    来自:帮助中心

    查看更多 →

  • 根据条件查询所有场景ID(API名称:queryTaskPictureByCondition)

    String 响应描述 result Object 响应结果内容data、分页数据 result出参: 参数 类型 描述 pos int 当前页,从0开始 total_count int 总数量 data List<Object> 响应结果内容data data出参: 参数 类型 描述 sceneId

    来自:帮助中心

    查看更多 →

  • 方案概述

    业知识与场景需求的深度融合,为客户提供 NLP、CV、多模态等领域的模型应用解决方案,帮助企业解决特定的业务问题。 方案架构 天宽昇腾云行业大模型适配服务通过深度学习算法优化与高效计算,结合华为昇腾算力,为各行业提供全面的大模型迁移、适配与优化服务。天宽通过深度优化昇腾算力,结合

    来自:帮助中心

    查看更多 →

  • 开始使用

    选择input文件夹作为下载路径 准备自己需要训练的算法。可在AI Gallery社区内订阅算法,以线性回归-LinearRegression为例。 图18 订阅算法 等待数据集下载完成后,即可创建训练作业。 图19 创建训练作业 图20 选择订阅的自动学习算法-预测分析 图21 设置数据输

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据流的分离

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 获取智能任务的信息

    1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。 2 生成模型服务 将已有模型部署为模型服务 接入模型服务 支持通过API接入模型服务,同时支持将平台预置模型进行微调后,部署为模型服务,模型服务可以在创建Agent时使用或通过模型调用接口调用。 3 调测模型 通

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • 可信联邦学习作业管理

    可信联邦学习作业管理 新建联邦学习作业 获取横向联邦学习作业详情 获取纵向联邦作业详情 保存纵向联邦作业 保存横向联邦学习作业 查询联邦学习作业列表 查询特征选择执行结果 删除联邦学习作业 执行横向联邦学习作业 执行纵向联邦模型训练作业 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类

    全参微调:直接在模型上训练,影响模型全量参数的微调训练,效果较好,收敛速度较慢,训练时间较长。 LoRA微调:冻结原模型,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数,效果接近或略差于全参训练,收敛速度快,训练时间短。 增量预训练:在现有预训练模型基础上,利用新数据

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了