AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习一次训练样本个数 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 创建自动学习项目有个数限制吗?

    创建自动学习项目有个数限制吗? ModelArts自动学习,包括图像分类项目、物体检测项目、预测分析项目、声音分类和文本分类项目。您最多只能创建100个自动学习项目。 父主题: 创建项目

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 查看/标识/取消/下载样本

    单击对应的“采集样本数量”、“AI训练样本数”或“学习案例样本数”列的数值,“可以进入到样本清单明细页面,查看当前的样本明细 标识AI训练/取消AI训练样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方的/ 标记学习案例/取消学习案例样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方的/。

    来自:帮助中心

    查看更多 →

  • 训练模型

    在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”填写“学习率”、“训练轮次”和“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch Size),指一次训练所抓取的数据样本数量,影响训练速度及模型优化效果。

    来自:帮助中心

    查看更多 →

  • 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同

    为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的

    来自:帮助中心

    查看更多 →

  • ALM-257564679 学习到动态mac地址个数达到上限

    VLAN ID。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 删除不需要的MAC,或者在VLAN视图下执行命令mac-address

    来自:帮助中心

    查看更多 →

  • ALM-257564680 学习到动态mac地址个数达到上限

    L2IfPortName 接口名字。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 删除不需要的MAC,或者在VLAN视图下执行命令mac-address

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • ALM-157163596 学习到动态mac地址个数达到上限

    BD ID。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 正常提示信息,无需处理。 参考信息 无

    来自:帮助中心

    查看更多 →

  • ALM-157163635 学习到动态MAC地址个数达到上限

    隧道对端IP地址。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 1. 删除不需要的MAC,或者执行命令peer

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型只能回答训练样本中的问题

    为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • yaml配置文件参数配置说明

    个目录下 logging_steps 2 用于指定模型训练过程中,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 500 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务 plot_loss true

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 大模型微调训练类问题

    为什么微调后的盘古大模型的回答中会出现乱码 为什么微调后的盘古大模型的回答会异常中断 为什么微调后的盘古大模型只能回答训练样本中的问题 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 为什么多轮问答场景的盘古大模型微调效果不好

    来自:帮助中心

    查看更多 →

  • 数据准备

    Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率。此外由于原始的数据集较小,采用了Imbalanced

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了