AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习样本怎样训练 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。De

    来自:帮助中心

    查看更多 →

  • 功能介绍

    网络结构及模型参数配置2 模型训练 模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持多机多卡环境下的模型分布式训练,大幅度提升模型训练的速度,满足海量样本数据加速训练的需求。 图17

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 执行作业

    。 分类阈值 区分正负例的得分阈值。 逻辑回归/FiBiNET 学习率 控制权重更新的幅度,影响训练收敛速度和模型精度,取值范围为0~1。 迭代次数 完成全部样本训练的次数,取值为正整数。 批大小 单次训练使用的样本数,取值为正整数。 分类阈值 区分正负例的得分阈值 自定义配置:

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    纵向联邦作业XGBoost算法只支持两方参与训练训练作业必须选择一个当前计算节点发布的数据集。 作业创建者的数据集必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法和FiBiNET算法。 纵向联邦学习分为五个步骤:数据选择、样本对齐(可选)、特征选择(可选)、模型训练、模型评估。

    来自:帮助中心

    查看更多 →

  • 排序策略

    保存根路径 单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推

    来自:帮助中心

    查看更多 →

  • 查看/标识/取消/下载样本

    单击对应的“采集样本数量”、“AI训练样本数”或“学习案例样本数”列的数值,“可以进入到样本清单明细页面,查看当前的样本明细 标识AI训练/取消AI训练样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方的/ 标记学习案例/取消学习案例样本:在“样本库”、“AI训

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手

    来自:帮助中心

    查看更多 →

  • 产品功能

    对接多种主流数据存储系统,为数据消费者实现多方数据的融合分析,参与方敏感数据能够在聚合计算节点中实现安全计算。 多方联邦训练 对接主流深度学习框架实现横向和纵向联邦建模,支持基于SMPC(如不经意传输、同态加密等)的多方样本对齐和训练模型保护。 云端容器化部署 参与方数据源计算节点云原生容器部署,聚合计算节点动态扩容,支持云、边缘、H CS O多种部署模式。

    来自:帮助中心

    查看更多 →

  • 训练模型

    在“参数配置”填写“学习率”、“训练轮次”和“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch Size),指一次训练所抓取的数据样本数量,影响训练速度及模型优化效果。 确认信息后,单击“开始训练”。

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现声音分类

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    问答模型训练管理 专业版 适合企业复杂对话流程,需要多轮对话的场景,包括以下功能模块: 包含“高级版”功能,以及以下功能。 多轮技能管理 知识共享 应用授权 旗舰版 适用于对机器人答准率有高要求,数据样本大的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练

    来自:帮助中心

    查看更多 →

  • 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同

    这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。

    来自:帮助中心

    查看更多 →

  • 训练模型

    “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “语种”指文本数据的语言种类。 确认信息后,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查

    来自:帮助中心

    查看更多 →

  • 训练预测分析模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20) 训练轮数 1 10 20

    来自:帮助中心

    查看更多 →

  • 训练模型

    “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 确认信息后,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    预测为该分类的样本比率,反映模型对正样本的识别能力。 precision 精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1 F1值 F

    来自:帮助中心

    查看更多 →

  • 分页查询智能任务列表

    自动标注的算法类型。可选值如下: fast:快速型,仅使用已标注样本进行训练 accurate:准确型,除已标注样本外,会额外使用未标注的样本做半监督训练 ambiguity Boolean 是否通过图片模糊度来聚类。 annotation_output String 主动学习标注结果输出路径。 collect_rule

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了