基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    深度学习框架pytorch书籍 更多内容
  • 方案概述

    以保证不同 服务器 上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorch为例,PyTorch默认会通过文件接口访问数据,AI算法开发人员也习惯使用文件接口,因此文件接口是最友好的共享存储访问方式。 如果您想了解

    来自:帮助中心

    查看更多 →

  • 云端推理框架

    云端推理框架 推理服务 异步推理 模型仓库 模板管理 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    面向AI场景使用OBS+SFS Turbo的存储加速方案概述 应用场景 近年来,AI快速发展并应用到很多领域中,AI新产品掀起一波又一波热潮,AI应用场景越来越多,有自动驾驶、大模型、AIGC、科学AI等不同行业。AI人工智能的实现需要大量的基础设施资源,包括高性能算力,高速存储

    来自:帮助中心

    查看更多 →

  • 如何在代码中打印GPU使用信息

    memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal)) 注:用户在使用pytorch/tensorflow深度学习框架时也可以使用框架自带的api进行查询。 父主题: 更多功能咨询

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    Megatron-DeepSpeed Megatron-DeepSpeed是一个基于PyTorch深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等

    来自:帮助中心

    查看更多 →

  • 适配pytorch

    适配pytorch Megatron框架的适配需要提前安装好pytorch及其依赖。 Megatron改动示例 设置环境变量,命令如下所示: AITURBO_BACKUP_ENABLE = True 环境变量“AITURBO_BACKUP_ENABLE”用于配置是否开启内存副本,

    来自:帮助中心

    查看更多 →

  • AIGC模型训练推理

    5&SDXL Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.908) SD WEBUI套件适配PyTorch NPU的推理指导(6.3.908) SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6

    来自:帮助中心

    查看更多 →

  • 功能介绍

    集成VSCode开发工具,利用工具的便捷性,实现在线代码编写和调试。支持使用多种业界主流AI算法框架,如TensorflowPyTorchSpark_MLlibMXNet等,及华为自研AI框架MindSpore。提供丰富的CPU、GPU和华为自研Ascend芯片资源,进行模型训练。

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等

    来自:帮助中心

    查看更多 →

  • 使用预置镜像制作自定义镜像用于训练模型

    使用预置框架构建 自定义镜像 原理介绍 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面选择预置框架名称后,在预置框架版本下拉列表中选择“自定义”。

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    训练作业的创建方式介绍 创建方式 适用场景 使用预置框架创建训练作业 如果您已在本地使用一些常用框架完成算法开发,您可以选择常用框架,创建训练作业来构建模型 使用自定义镜像创建训练作业 如果您开发算法时使用的框架并不是常用框架,您可以将算法构建为一个自定义镜像,通过自定义镜像创建训练作业。

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    Standard的自动学习功能完成“图像分类”AI模型的训练和部署。 面向AI开发零基础的用户 使用Standard自动学习实现口罩检测 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“物体

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    Standard支持的AI框架 ModelArts Standard的开发环境Notebook、训练作业、模型推理(即AI应用管理和部署上线)支持的AI框架及其版本,请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore

    来自:帮助中心

    查看更多 →

  • 配置&编译框架简介

    配置&编译框架简介 Huawei LiteOS使用Kconfig文件配置系统,基于GCC/Makefile实现组件化编译。 不论是Linux下使用make menuconfig命令配置系统,还是Windows下使用Huawei LiteOS Studio进行图形化配置,Huawei

    来自:帮助中心

    查看更多 →

  • 创建模型不同方式的场景介绍

    /home/work/predict/bin/run.sh PyTorch python2.7(待下线) python3.6 python3.7 pytorch1.4-python3.7 pytorch1.5-python3.7(待下线) pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18

    来自:帮助中心

    查看更多 →

  • 分布式训练功能介绍

    果用户在AI Hub中打开了可用的案例,会自动跳转到CodeLab中,此时是可以使用这项功能的。 如果切换了Notebook的规格,那么只能在Notebook进行单机调测,不能进行分布式调测,也不能提交远程训练任务。 当前仅支持PyTorch和MindSpore AI框架,如果M

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了