基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    深度学习框架pytorch书籍 更多内容
  • 创建模型不同方式的场景介绍

    odelArts,创建为模型,用于部署服务。 从AI Gallery订阅模型:ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,您可订阅AI Gallery上的模型进行AI体验学习。 推理支持的AI引擎 在ModelArts创建模型时,如果使用预置镜像

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 分布式训练功能介绍

    果用户在AI Hub中打开了可用的案例,会自动跳转到CodeLab中,此时是可以使用这项功能的。 如果切换了Notebook的规格,那么只能在Notebook进行单机调测,不能进行分布式调测,也不能提交远程训练作业。 当前仅支持PyTorch和MindSpore AI框架,如果M

    来自:帮助中心

    查看更多 →

  • 数据治理框架

    数据治理 框架 数据治理框架 数据治理模块域 数据治理各模块域之间的关系

    来自:帮助中心

    查看更多 →

  • 数据治理框架

    数据治理框架 数据治理框架制定如下: 图1 数据治理框架 父主题: 数据治理框架

    来自:帮助中心

    查看更多 →

  • 语言和框架支持

    语言和框架支持 CodeArts IDE内置了强大的Java语言支持和编码辅助功能。此外,它还为JavaScript和TypeScript的Web开发提供了丰富的内置支持,为HTML、 CSS 、S CS S和JSON等Web技术也提供了出色的工具支持。

    来自:帮助中心

    查看更多 →

  • CMF 云迁移框架

    CMF 云迁移框架 云迁移框架(Cloud Migration Framework,以下简称CMF)是站在客户视角的上云迁移方法论,它来源于华为云的经验和大型企业上云的优秀实践,为企业上云提供完整的上云指导。企业上云的整体思路是,先整体规划,然后小范围试点,最后再大规模上云。按照

    来自:帮助中心

    查看更多 →

  • 服务开发框架详解

    服务开发框架详解 整体结构介绍 单Module base/service DDD 父主题: AstroPro学堂

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    7-ubuntu_1804-x86_64 不同区域支持的AI引擎有差异,请以实际环境为准。 训练基础镜像详情(PyTorch) 介绍预置的PyTorch镜像详情。 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 搭建ThinkPHP框架

    搭建ThinkPHP框架 简介 ThinkPHP遵循Apache2开源许可协议发布,是一个免费、开源、快速、简单的面向对象的轻量级PHP开发框架,是为了敏捷WEB应用开发和简化企业应用开发而诞生。本文介绍如何在华为云上使用CentOS 7.2操作系统的实例搭建ThinkPHP框架。 前提条件

    来自:帮助中心

    查看更多 →

  • 步骤2:框架配置

    步骤2:框架配置 框架配置和基本配置一样,需要您根据实际情况进行勾选配置,不同的配置会呈现不同的效果。 是否启用模板,默认不启用,如需启用,在下拉框中选择已创建的模板。创建模板具体操作请参考创建架构模板。 选择模板后,模板配置将自动带入包括“框架配置”和“生成策略”。 选择参考框架。

    来自:帮助中心

    查看更多 →

  • 执行框架转换

    执行框架转换 应用场景 针对企业中使用Dubbo等其他API框架的存量服务,AstroPro支持将代码统一转换为Spring MVC + OpenAPI的主流框架。转换后的框架将统一化,这有助于简化技术栈,降低技术多样性带来的复杂性,同时提高开发和运维团队的效率。 约束与限制 框架转换为Astro

    来自:帮助中心

    查看更多 →

  • 产品优势

    互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS TensorFlow)的联邦计算; 支持控制流和数据流的分离,用户无需关心计算

    来自:帮助中心

    查看更多 →

  • 场景介绍

    不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。 ZeRO-0,配置以下参数

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    模型训练简介 模型训练服务支持所有主流算法框架,如:TensorflowMXNetCaffeSpark_MLlibScikit_Learn,XGBoost,PyTorch、Ascend-Powered-Engine等。提供CPU、GPU等多种计算资源,集成了基于开源

    来自:帮助中心

    查看更多 →

  • 卓越架构技术框架简介

    卓越架构技术框架简介 卓越架构技术框架(Well-Architected Framework)聚焦客户业务上云后的关键问题的设计指导和最佳实践。 以华为公司和业界最佳实践为基础,以韧性、安全性、性能效率、成本优化与卓越运营五个架构关注点为支柱,打造领先的卓越架构技术框架,支撑客户完

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了