基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    深度学习框架 pytorch 更多内容
  • 产品优势

    即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有跨AZ容灾能力。 无 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。 支持数据源 云上:OBS、RDS、DWS、 CSS 、MongoDB、Redis。

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    模型训练简介 模型训练服务支持所有主流算法框架,如:TensorflowMXNetCaffeSpark_MLlibScikit_Learn,XGBoost,PyTorch、Ascend-Powered-Engine等。提供CPU、GPU等多种计算资源,集成了基于开源

    来自:帮助中心

    查看更多 →

  • 卓越架构技术框架简介

    卓越架构技术框架简介 卓越架构技术框架(Well-Architected Framework)聚焦客户业务上云后的关键问题的设计指导和最佳实践。 以华为公司和业界最佳实践为基础,以韧性、安全性、性能效率、成本优化与卓越运营五个架构关注点为支柱,打造领先的卓越架构技术框架,支撑客户完

    来自:帮助中心

    查看更多 →

  • 使用PyCharm Toolkit提交训练作业报错NoSuchKey

    Toolkit提交训练作业时,常用框架选择训练作业支持的版本,具体支持哪些版本请参考训练作业支持的AI引擎PyTorch的举例:不要选PyTorch-1.0.0、PyTorch-1.3.0、PyTorch-1.4.0。选择如下图: 图1 选择训练作业支持的AI框架 父主题: PyCharm

    来自:帮助中心

    查看更多 →

  • 基本概念

    代码和所有参数设置。用户可参考技能模板后快速创建自己的新技能。 ModelBox 端边云AI应用开发和运行框架规范,以及在此规范上所实现的运行时框架。基于ModelBox开发镜像高效开发AI应用,屏蔽底层差异,快速部署至端、边、云上进行高性能推理计算。

    来自:帮助中心

    查看更多 →

  • 附录:微调训练常见问题

    错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等

    来自:帮助中心

    查看更多 →

  • 路网数字化服务-成长地图

    CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍 应用容器化改造流程 步骤1:对应用进行分析

    来自:帮助中心

    查看更多 →

  • SD1.5&SDXL Koyha框架基于DevServer适配PyTorch NPU训练指导(6.3.908)

    SD1.5&SDXL Koyha框架基于DevServer适配PyTorch NPU训练指导(6.3.908) 训练场景和方案介绍 准备镜像环境 Finetune训练 LoRA训练 父主题: AIGC模型训练推理

    来自:帮助中心

    查看更多 →

  • 创建算法

    设置算法启动方式(预置框架) 图1 使用预置框架创建算法 需根据实际算法代码情况设置“代码目录”和“启动文件”。选择的预置框架和编写算法代码时选择的框架必须一致。例如编写算法代码使用的是TensorFlow,则在创建算法时也要选择TensorFlow。 表1 使用预置框架创建算法 参数 说明

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 产品概述

    源注册、隐私策略(敏感,非敏感,脱敏)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参

    来自:帮助中心

    查看更多 →

  • AIGC模型训练推理

    6基于DevServer适配PyTorch NPU训练指导(6.3.909) Qwen-VL基于DevServer适配Pytorch NPU的推理指导(6.3.909) SD WEBUI套件适配PyTorch NPU的推理指导(6.3.908) SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • 产品功能

    护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。

    来自:帮助中心

    查看更多 →

  • ISDP产品功能整体框架

    ISDP产品功能整体框架 功能模块 角色说明

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 高性能调度

    的发展,这些框架都在相应的业务领域有着不可替代的作用,例如SparkTensorflow,Flink等。在业务复杂性能不断增加的情况下,单一的领域框架很难应对现在复杂的业务场景,因此现在普遍使用多种框架达成业务目标。但随着各个领域框架集群的不断扩大,以及单个业务的波动性,各个子

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    【可选】自定义数据集dataset_info.json配置文件绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架 是,选用ZeRO (Zero Redundancy Optimizer)优化器 ZeRO-0,配置以下参数 deepspeed:

    来自:帮助中心

    查看更多 →

  • ModelArts统一镜像列表

    zip pytorch_2.1.0-cann_8.0.rc2-py_3.9-euler_2.10.7-aarch64-snt9b 表6 pytorch_2.1.0-cann_8.0.rc2-py_3.9-euler_2.10.7-aarch64-snt9b AI引擎框架 URL 包含的依赖项

    来自:帮助中心

    查看更多 →

  • 昇腾云服务6.3.908版本说明

    LLM开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908) LLM开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908) AIGC,包名:AscendCloud-AIGC 支持如下框架或模型基于DevServer的PyTorch NPU推理: S

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。 ZeRO-0,配置以下参数

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了