AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习非局部模型 更多内容
  • 按需计费

    、测试模型服务时需要调用ChatGLM3-6B大模型服务API在线调用、大模型微调服务API在线调用-SFT局部调优,按需计费模式能大幅降低客户的业务成本。 适用计费项 AI原生应用引擎的以下计费项支持按需计费。 表1 适用计费项 计费项 说明 ChatGLM3-6B大模型服务API在线调用

    来自:帮助中心

    查看更多 →

  • 模型测试

    模型测试 将样例数据中的测试数据集加载至当前件项目中,进行数据预处理,并基于训练出的模型进行效果验证。 单击界面左下角的“加载数据”,弹出“加载数据”代码框,如图1所示。 需要配置的参数如下所示,其余参数保持默认值即可。 数据集:从下拉框中选择数据集“samples”。 数据集

    来自:帮助中心

    查看更多 →

  • 文档导读

    作指导。 《件使用指南》 模型训练服务预置了KPI异常检测、多层嵌套异常检测、硬盘故障根因分析等多个件,供用户直接利用件能力,定制生成业务模型。 文档提供了所有件的界面操作过程,从创建项目、数据集、模型训练、模型测试、模型推理到模型归档的全流程。 《自定义学件开发指南》

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测件服务

    来自:帮助中心

    查看更多 →

  • 模型选择

    模型选择 目前,件已经集成了几十维到上百维不同种类的特征库,源于历史各类Case和通用KPI异常检测的算法库。通过数据的特征画像,可以实现自动化的特征推荐和算法推荐。 单击“特征画像”左下方的“模型选择”。 新增“模型选择”内容,如图1所示。 图1 模型选择 单击“模型选择”代码框左侧的图标,运行代码。

    来自:帮助中心

    查看更多 →

  • 创建项目

    创建项目 KPI异常检测件服务,封装在模型训练服务的“KPI异常检测”模板中。可通过创建“KPI异常检测”模板项目,体验KPI异常检测件服务。 目前KPI异常检测件,仅支持对单KPI进行异常检测。 在模型训练服务首页,单击“KPI异常检测”模板中的“使用模板创建”。 弹出“创建项目”对话框,如图1所示。

    来自:帮助中心

    查看更多 →

  • 使用AutoGenome镜像

    使用AutoGenome镜像 AutoGenome是Notebook镜像,利用AutoML等技术帮助科研工作者在基因组数据上端到端实现深度学习网络搜索,训练,评估,预测和解释的工具包。 使用AutoGenome镜像的详细步骤如下所示: 步骤1:订阅镜像 步骤2:创建Notebook

    来自:帮助中心

    查看更多 →

  • 在模型广场查看模型

    ”或“部署”,可以直接使用模型进行训推。 当按钮置灰时,表示模型不支持该任务。 模型介绍 表1列举了ModelArts Studio大模型即服务平台支持的模型清单,模型详细信息请查看界面介绍。 表1 模型广场的模型系列介绍 模型系列 模型类型 应用场景 支持语言 GLM-4 文本生成

    来自:帮助中心

    查看更多 →

  • 产品概述

    发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图,提供插件化的 区块链 对接存储,实现使用过程的可审计、可追溯。

    来自:帮助中心

    查看更多 →

  • 自定义学件开发指南

    自定义学件开发指南 件开发简介 访问模型训练服务 开发件 提取件配置,固化学件资产 编辑件 配置文件 参考

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    高级版、专业版、旗舰版机器人支持问答模型训练。 您可通过添加更多扩展问或改用其他类型的模型来提高指标。包含以下三种训练模型: 默认模型:修改知识库内容后自动生效。 轻量级深度学习模型:修改知识库内容后需训练模型发布生效。 重量级深度学习模型:修改少量知识库内容无需重新训练发布,但会导致问答变慢,模型运行中时

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、

    来自:帮助中心

    查看更多 →

  • 创建项目

    创建项目 时序预测件,目前封装在模型训练服务的JupyterLab平台中。可通过在项目中创建JupyterLab环境,体验时序预测件服务。 时序预测件支持同时对多指标进行预测。 在模型训练服务首页,单击界面左上角的“创建项目”图标。 弹出“创建项目”对话框。请根据实际情况,配置如下参数:

    来自:帮助中心

    查看更多 →

  • 开发推理

    用Gpr数据集体验KPI异常检测件的操作流程,可以先执行“专家经验注入”,再执行“开发推理”,那么专家经验会自动转成代码并关联到模型推理函数里面。 “开发推理”用于生成推理代码至推理文件“learnware_predict.py”中。当模型打包发布成在线推理服务时,可以使用推理代码,完成快速在线推理验证。

    来自:帮助中心

    查看更多 →

  • IoTA.01010036 属性引用深度超过配额限制

    属性引用深度超过配额限制 错误码描述 属性引用深度超过配额限制。 可能原因 资产属性作为其他的分析任务的输入参数,此时该资产属性引用深度为1,举例:模型A中有属性a,而模型B的分析任务以a为输入参数,则a的引用深度为1,深度限制最大为10。 处理建议 系统已为用户创建资产模型时增加

    来自:帮助中心

    查看更多 →

  • 创建项目

    创建项目 硬盘故障根因分析件服务,目前封装在模型训练服务的JupyterLab平台中。可通过在项目中创建JupyterLab环境,体验硬盘故障根因分析件服务。 在模型训练服务首页,单击界面左上角的“创建项目”图标。 弹出“创建项目”对话框。请根据实际情况,配置如下参数: 名称:项目名称。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 硬盘故障检测模板会预置模型训练工程,无需关注,下面会提供端到端的操作流程,帮助用户快速熟悉模型训练界面操作。 单击菜单栏中的“模型训练”,进入模型训练首页。 可以看到预置的“hardisk_detect”模型训练工程,这是硬盘故障检测模板预置的模型训练工程,本次不使用。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型 模型推理

    来自:帮助中心

    查看更多 →

  • 测试模型

    测试模型 用测试数据测试模型的泛化能力。训练数据可以是带标签或者不带标签的数据,测试数据一定是带标签的数据,方便评估模型执行效果。 单击“训练模型”左下方的“测试模型”,新增“测试模型”内容。 参数配置均保持默认值。 单击“测试模型”代码框左侧的图标,进行模型评估。 模型测试效果会通过表格的形式在下方展示。

    来自:帮助中心

    查看更多 →

  • 训练模型

    户创建的件项目名称。 model目录的子目录含义如下所示: feature_file:存放推荐的特征配置列表文件和KPI特征画像文件。 model:存放训练好的模型。 parameter_file:存放模型推荐的算法和参数配置文件。 图2 model目录 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 单击菜单栏中的“模型管理”,可在“模型管理”界面查看打包好的模型,如图1所示。 图1 模型管理 父主题: 使用模型训练服务快速训练算法模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了