AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 训练完后 更多内容
  • demo.sh方式启动(历史版本)

    mllm_demo,identity 否,忽略此步骤,执行下一步。 如需其他配置参数,可参考表1按照实际需求修改。 步骤三:启动训练脚本 修改yaml配置文件,启动训练脚本。模型不同最少NPU卡数不同,NPU卡数建议值可参考表1。 修改启动脚本demo.sh 进入代码目录{work_d

    来自:帮助中心

    查看更多 →

  • 产品术语

    cintosh等操作系统,可以用来编写TCP/IP应用程序。 S 数据采样 在其他特征操作前先对数据集进行样本采样。数据采样所有的特征操作,都是基于采样的数据进行处理,可以减少特征操作处理的数据量,提升特征操作的处理速度。 数据服务 支持网络工参、性能、告警等各种类型数据的快

    来自:帮助中心

    查看更多 →

  • 发布训练后的NLP大模型

    发布训练的NLP大模型 NLP大模型训练完成,需要执行发布操作,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,单击模型名称进入任务详情页。 单击进入“训练结果”页签,单击“发布”。

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    临的实际困难,尤其是高昂的模型训练与部署成本,这往往成为创意落地的阻碍。通过大量开发者实践,针对主流昇腾云开源大模型,沉淀最佳的算力组合方案,为开发者在开发模型的最后一步,提供最佳实践的算力方案、实践指南和文档,节省开发者学习和试错资金成本,提升学习和开发效率。 父主题: 功能介绍

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendFactory训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

  • Windows主机进行深度采集后系统镜像结果错误

    Windows主机进行深度采集系统镜像结果错误 问题描述 在对Windows主机进行主机深度采集,在资源详情的规格信息中,系统镜像显示乱码。 问题分析 出现该问题可能是因为该Windows主机的区域设置和显示语言不一致,从而导致采集系统镜像信息失败。 解决方法 您可以按照以下步骤进行排查和解决:

    来自:帮助中心

    查看更多 →

  • 大数据分析

    实时数据分析应用十分广泛,在车联网、金融保险、舆情分析、智慧城市等场景均有应用。 客户瓶颈 收集大数据时需要快速添加大量实例,并在收集结束删除实例。 随着数据量不断增大,企业要高效准确地处理实时数据,需要运行越来越多的CPU资源来提供充足算力。采用按需实例会在成本可控上遇到较大挑战。

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    问答模型训练管理 专业版 适合企业复杂对话流程,需要多轮对话的场景,包括以下功能模块: 包含“高级版”功能,以及以下功能。 多轮技能管理 知识共享 应用授权 旗舰版 适用于对机器人答准率有高要求,数据样本大的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    资源配置 训练单元 创建当前训练任务所需的训练单元数量。 订阅提醒 订阅提醒 该功能开启,系统将在任务状态更新时,通过短信或邮件将提醒发送给用户。 基本信息 名称 训练任务名称。 描述 训练任务描述。 参数填写完成,单击“立即创建”。 创建好训练任务,页面将返回“模型训练”页面,可随时查看当前任务的状态。

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    当任务状态变为“已停止”时,表示微调任务已停止执行。如果停止失败,任务状态显示为“运行失败”,您可以检查配置重新停用。 发布微调的模型 微调任务执行完成,可以将微调的模型部署为模型服务,模型部署才能进行模型调测以及在创建Agent时调用。 在模型微调流水线任务列表中,单击操作列的“发布

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练训练作业的预置框架介绍

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • 附录:微调训练常见问题

    _timeout参数,修改如图1所示。 #修改前 barrier_timeout=self._exit_barrier_timeout #修改 barrier_timeout=3000 图1 修改的barrier_timeout参数 问题5:训练过程中报"ModuleNotFoundError:

    来自:帮助中心

    查看更多 →

  • 在ModelArts自动学习中,如何进行增量训练?

    在图片都标注完成,单击右上角“开始训练”,在“训练设置”中,在“增量训练版本”中选择之前已完成的训练版本,在此版本基础上进行增量训练。其他参数请根据界面提示填写。 设置完成,单击“确定”,即进行增量训练。系统将自动跳转至“模型训练”页面,待训练完成,您可以在此页面中查看训练详情,如

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据流的分离

    来自:帮助中心

    查看更多 →

  • 应用场景

    数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了