弹性云服务器 ECS

 

弹性云服务器(Elastic Cloud Server)是一种可随时自助获取、可弹性伸缩的云服务器,帮助用户打造可靠、安全、灵活、高效的应用环境,确保服务持久稳定运行,提升运维效率

 
 

    深度学习 训练实例 更多内容
  • 修订记录

    发平台”章节全量内容。 模型训练服务的“模型训练”菜单界面优化,对应刷新“模型训练”章节全量内容。 模型训练服务的“模型管理”页面增加推理服务入口,对应刷新“发布推理服务”章节内容。 2019-12-30 新增如下章节: 订购模型训练服务 模型训练服务首页简介 JupyterLab开发平台

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • GS

    ne执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GS

    ne执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。 2 生成模型服务 将已有模型部署为模型服务 自建模型并发布为模型服务 模型需要部署成功后才可正式提供模型服务。部署成功后,可以对模型服务进行模型调测,并支持在创建Agent时使用或通过模型调用接口调用。 3 调测模型

    来自:帮助中心

    查看更多 →

  • 编辑代码(简易编辑器)

    持通过“Ctrl+F”方式搜索日志。 :将当前训练工程加入训练。 :返回到当前训练工程所在的“模型训练”页面。 训练任务:查看训练任务的运行状态。可以查看训练任务的运行日志以及训练报告,删除训练任务。也可以在任务执行过程中单击暂停训练任务。 3 代码目录:包含日志文件夹、模型文件

    来自:帮助中心

    查看更多 →

  • 自动学习项目中,如何进行增量训练?

    自动学习项目中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    在下拉列表中选择数据集版本。 训练数据比例 填写训练数据比例,如果填为0,则任务不执行训练阶段。 训练数据比例是指用于训练模型的数据集与测试数据集的比例。通常情况下,会将数据集分成训练集和测试集两部分,其中训练集用于训练模型,测试集用于评估模型的性能。 在实际应用中,训练数据比例的选择取决于

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据流的分离

    来自:帮助中心

    查看更多 →

  • 应用场景

    数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online最佳实践一览表 最佳实践 说明 2-基于CodeArts IDE Online快速开发、部署微服务 本实践主要讲述在CodeArts IDE Online中如何快速将开发好的微服务部署到华为云容器服务并进行快速验证的过程。 3-基于CodeArts IDE Online快速开发、发布 WeLink 应用

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    。 数据集版本 在下拉列表中选择数据集版本。 训练数据比例 训练数据比例是指用于训练模型的数据集与测试数据集的比例。通常情况下,会将数据集分成训练集和测试集两部分,其中训练集用于训练模型,测试集用于评估模型的性能。 在实际应用中,训练数据比例的选择取决于许多因素,例如可用数据量、

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦模型训练作业

    String 发送的实体的MIME类型 表3 请求Body参数 参数 是否必选 参数类型 描述 instance_id 否 String 实例id,最大32位,由字母和数字组成 job_instance_type 是 String 纵向联邦作业类型 SQL, HFL, VFL_TRAIN

    来自:帮助中心

    查看更多 →

  • GS

    预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的AI应用版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现声音分类

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的AI应用一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现物体检测

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    tensorflow version print(tf.__version__) 下载Fashion MNIST图片数据集,该数据集包含了10个类型共60000张训练图片以及10000张测试图片。 1 2 3 # download Fashion MNIST dataset fashion_mnist

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了