弹性云服务器 ECS

 

弹性云服务器(Elastic Cloud Server)是一种可随时自助获取、可弹性伸缩的云服务器,帮助用户打造可靠、安全、灵活、高效的应用环境,确保服务持久稳定运行,提升运维效率

 
 

    深度学习 训练实例 更多内容
  • 基本概念

    处理算子。 模型包 将模型训练生成的模型进行打包。可以基于模型包生成SHA256校验码、创建模型验证服务、重训练服务、发布在线推理服务。也可以上架至应用市场,支持用户订购后,下载到推理框架中使用。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    附录:指令微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框

    来自:帮助中心

    查看更多 →

  • 产品术语

    对故障实施自动隔离与自动修复,大幅提升网络使用效率与维护效率。 X 模型训练服务 模型训练服务为开发者提供电信领域一站式模型开发服务,涵盖数据预处理、特征提取、模型训练、模型验证、推理执行和重训练全流程。服务提供开发环境和模拟验证环境及ICT网络领域AI资产,包括项目模板、算法、

    来自:帮助中心

    查看更多 →

  • 弹性伸缩概述

    E容器实例弹性到CCI服务的方法请参见CCE容器实例弹性伸缩到CCI服务。 两个维度的弹性组件与能力可以分开使用,也可以结合在一起使用,并且两者之间可以通过调度层面的容量状态进行解耦,详情请参见使用HPA+CA实现工作负载和节点联动弹性伸缩。 组件介绍 工作负载弹性伸缩类型介绍 表1

    来自:帮助中心

    查看更多 →

  • 迁移学习

    生成源数据实例 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 生成数据 > 生成源数据实例”。界面新增“生成迁移后的源数据实例”内容。 对应参数说明,如表6所示。 表6 生成迁移后的源数据实例参数说明 参数 参数说明 数据集 迁移后源数据对应的数据集。 数据集实例 源数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    能会发现还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建工程 创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务和模型包。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模型。此类大模型因具备更强的泛化

    来自:帮助中心

    查看更多 →

  • 排序策略

    保存根路径 单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 ModelArts Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。

    来自:帮助中心

    查看更多 →

  • 哪里可以了解Atlas800训练服务器硬件相关内容

    t9处理器的AI训练 服务器 ,实现完全自主可控,广泛应用于深度学习模型开发和AI训练服务场景,可单击此处查看硬件三维视图。 Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器 1.0.11 HCCN Tool接口参考主要介绍集群网络工具hccn_tool

    来自:帮助中心

    查看更多 →

  • 准备工作

    (计算空泡),从而提高训练效率。 学习率预热 不同的学习率调度器(决定什么阶段用多大的学习率)有不同的学习率调度相关超参,例如线性调度可以选择从一个初始学习率lr-warmup-init开始预热。您可以选择多少比例的训练迭代步使用预热阶段的学习率。不同的训练框架有不同的参数命名,需要结合代码实现设置对应的参数。

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    新建训练工程、联邦学习工程、训练服务或超参优化服务。 名称 模型训练名称。 模型训练工程描述 对模型训练工程的描述信息。 创建时间 训练工程、联邦学习工程、训练服务或者超参优化服务的创建时间。 类型 模型训练类型。 包含如下选项: 模型训练 联邦学习 训练服务 优化服务 创建者 创建训练工程、联邦

    来自:帮助中心

    查看更多 →

  • 产品概述

    支持云上、边缘、H CS 多种部署模式。 TICS 版本及规格说明 表1 TICS版本 版本 建议使用场景 企业版 满足企业级规模商用。 表2 TICS规格说明 规格 服务内容 联邦SQL分析 支持 横向联邦学习 支持 纵向联邦学习 支持

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了