内容审核-文本

内容审核-文本

内容审核-文本 Moderation (Text),基于华为自研的深度学习和内容审核模型,可自动识别出文本中出现的涉黄、广告、辱骂、灌水等内容,帮助客户降低业务违规风险,净化网络环境,提升用户体验

商用服务费用低至¥0.16/千次

自动识别出文本中出现的涉黄、广告、辱骂、灌水等内容

    深度学习 相似度检测算法 更多内容
  • 文本相似度(高级版)

    文本相似(高级版) 功能介绍 对文本语义相似计算。 具体Endpoint请参见终端节点。 本API免费调用,调用限制为2次/秒。 文本相似基础版和高级版基于不同算法实现,对相同文本,基础版和高级版的结果有所差别。根据测试数据,高级版效果一般优于基础版。 调试 您可以在API

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    8,输入用户问“我可以去哪办理”,机器人返回相似得分大于0.8的标准问给用户,并推荐相似得分大于0.6的标准问: 图8 阈值调整前 单击“查看JSON”,查看具体的相似得分。 图9 查看相似得分 阈值调整后,推荐问阈值为0.7,直接回答阈值为0.9,输入用户问“我可以去哪办理”,语料库中没有与用户问相似度得分高于0

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    例如在深度学习领域,可以根据用户输入的正样本和负样本,对数据进行清洗,保留用户想要的类别,去除用户不想要的类别。 数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似或者深度学习算法进行选择。数据选择可以避免人工采集图片过程中引入的重复图片、相似图片等问

    来自:帮助中心

    查看更多 →

  • 文本相似度(基础版)

    文本相似(基础版) 功能介绍 对文本进行语义相似计算。 具体Endpoint请参见终端节点。 调用华为云NLP服务会产生费用,本API支持使用基础套餐包,购买时请在 自然语言处理 价格计算器中查看基础套餐包和领域套餐包支持的API范围。 也可使用文本相似(高级版)接口,详情请见

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 应用场景

    准确率高:基于改进的深度学习算法,基于复杂环境语音审核准确率高。 支持特殊声音识别:支持特殊声音识别模型,如娇喘、呻吟、敏感声纹等。 内容审核-视频 内容审核 -视频有以下应用场景: 视频平台/社区:精准识别平台上的违规视频内容,帮助平台规避内容风险: 360全方位检测:提供多模态综合

    来自:帮助中心

    查看更多 →

  • 紧密中心度算法(closeness)

    紧密中心算法(closeness) 功能介绍 根据输入参数,执行紧密中心算法。 紧密中心算法(Closeness Centrality)计算一批节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。 URI POST /ges/v1.0/{project_id}/h

    来自:帮助中心

    查看更多 →

  • 中介中心度算法(betweenness)

    中介中心算法(betweenness) 功能介绍 根据输入参数,执行中介中心算法。 中介中心算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 URI POST /ges/v1.0/{project_id}/hyg/{g

    来自:帮助中心

    查看更多 →

  • 标签传播算法(Label Propagation)

    标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。 适用场景 标签传播算法(Label Propagation)适用于资讯传播、广告推荐、社区发现等场景。 参数说明 表1 标签传播算法(Label Propagation)参数说明

    来自:帮助中心

    查看更多 →

  • 算法一览表

    中介中心算法(Betweenness Centrality) 中介中心算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 边中介中心(Edge-betweenness Centrality) 边中介中心算法(Edge-betweenness

    来自:帮助中心

    查看更多 →

  • 服务支持使用哪些算法对图进行分析?

    一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似,节点的标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。

    来自:帮助中心

    查看更多 →

  • 中介中心度算法(betweenness)(2.2.4)

    中介中心算法(betweenness)(2.2.4) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 directed 否 是否考虑边的方向 Boolean true或者false true weight 否 边上权重 String 空或字符串

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 功能介绍

    自然语言处理基础 (Natural Language Processing Fundamentals),为用户提供包括分词、命名实体识别、关键词提取、短文本相似等自然语言相关的API,可用于智能问答、 对话机器人 、内容推荐、电商评价分析等场景中。 语言生成 (Language Generation,简

    来自:帮助中心

    查看更多 →

  • 标签传播算法(label_propagation)

    建图,节点包括已标注和未标注数据,其边表示两个节点的相似,节点的标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm

    来自:帮助中心

    查看更多 →

  • 召回策略

    最近邻域数 在UserCF算法中使用,生成的相似矩阵中为每个用户保留的若干个最相似用户。默认为100。 最小交叉 物品和物品之间被同一用户行为记录的数量,计算相似时,过滤掉共同记录小于最小交叉的item。 默认值:1。 物品活跃 物品过滤用户的活跃阈值。 取值范围:1-10000。

    来自:帮助中心

    查看更多 →

  • 创建ModelArts数据清洗任务

    simlarity_threshold 否 0.9 相似阈值。两张图片相似程度超过阈值时,判定为相似图片,反之按非相似图片处理。输入取值范围为0~1。 embedding_distance 否 0.2 样本特征间距。两张图片样本特征间距小于设定值,判定为相似图片,反之按非相似图片处理。输入取值范围为0~1。

    来自:帮助中心

    查看更多 →

  • ModelArts Pro的应用场景和用户群体

    自然语言处理套件 通用文本分类场景。 智能问答 通过中文分词、短文本相似、命名实体识别等自然语言处理相关技术,计算两个问题对的相似,可解决问答、对话、语料挖掘、知识库构建等问题。 内容推荐 通过文本分类预测模型,精确匹配出语义相似的内容,快速构建内容推荐场景。 视觉套件 商品识别 无人超

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 紧密中心度算法(Closeness Centrality)

    紧密中心算法(Closeness Centrality) 概述 紧密中心算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了