认知神经科学和深度学习 更多内容
  • Namespace和Network

    NamespaceNetwork Namespace(命名空间)是一种在多个用户之间划分资源的方法。适用于用户中存在多个团队或项目的情况。当前云容器实例提供“通用计算型”“GPU型”两种类型的资源,创建命名空间时需要选择资源类型,后续创建的负载中容器就运行在此类型的集群上。

    来自:帮助中心

    查看更多 →

  • 可信联邦学习作业

    可信联邦学习作业 概述 创建横向训练型作业 横向联邦训练作业对接MA 创建横向评估型作业 创建纵向联邦学习作业 执行作业 查看作业计算过程作业报告 删除作业 安全沙箱机制

    来自:帮助中心

    查看更多 →

  • 获取纵向联邦作业详情

    纵向联邦算法类型枚举,XG_BOOST,LIGHT_BGM, LOG ISTIC_REGRESSION 逻辑回归,NEURAL_NETWORK 神经网络,FIBINET work_step String 纵向联邦操作步骤枚举值。DATA_SELECTION.数据选择,SAMPLE_ALIGNMENT

    来自:帮助中心

    查看更多 →

  • 保存纵向联邦作业

    纵向联邦算法类型枚举,XG_BOOST,LIGHT_BGM,LOGISTIC_REGRESSION 逻辑回归,NEURAL_NETWORK 神经网络,FIBINET work_step 否 String 纵向联邦操作步骤枚举值。DATA_SELECTION.数据选择,SAMPLE_ALIGNMENT

    来自:帮助中心

    查看更多 →

  • 方案概述

    使用NGINX负载均衡实现入口的高可用。 云数据库实现数据安全可靠、高可用。 方案优势 可靠性高可用性:应用程序和数据具有高可用性可靠性。提供备份恢复功能,保护数据免受意外数据丢失或灾难性事件的影响 弹性灵活性:根据业务需求增加或减少 服务器 、存储网络资源,能够快速适应变化的需求,提高效率并降低成本 节省成

    来自:帮助中心

    查看更多 →

  • 创建实时预测作业

    创建训练模型时参数必须有"save_format": "SAVED_MODEL"。 创建联邦预测作业 实时预测作业在本地运行,目前仅支持深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦

    来自:帮助中心

    查看更多 →

  • 应用场景

    应用场景 推荐系统支持深度智能挖掘用户物品的关联关系,将对应场景的推荐结果推送给用户,代替低纬度的人工规则,提升了相关运营指标用户的体验。包含了互联网信息流,短视频/直播/音乐/阅读,广电媒资,社交,电商等场景。 RES+电商应用场景 场景描述 电商场景中,通常涉及首页推荐、

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 什么是OptVerse

    OptVerse以开放API(Application Programming Interface,应用程序编程接口)的方式提供给用户,用户通过实时访问调用API获取推理结果,帮助用户自动采集关键数据,打造智能化业务系统,提升业务效率。

    来自:帮助中心

    查看更多 →

  • Namespace和Network

    NamespaceNetwork Namespace(命名空间)是一种在多个用户之间划分资源的方法。适用于用户中存在多个团队或项目的情况。当前云容器实例提供“通用计算型”“GPU型”两种类型的资源,创建命名空间时需要选择资源类型,后续创建的负载中容器就运行在此类型的集群上。

    来自:帮助中心

    查看更多 →

  • 创建批量预测作业

    关闭前已触发重试的作业不受影响,仅对关闭后的执行作业生效。 对重试操作配置后,配置CPU配额内存配额。执行批量预测作业时,会创建新容器来执行,这两个配额参数的值为创建新容器的CPU核数内存大小,默认CPU核数为1,内存大小512M。 然后勾选“选择训练作业”列表中的某一训练作

    来自:帮助中心

    查看更多 →

  • 查询联邦学习作业列表

    查询联邦学习作业列表 功能介绍 查询联邦学习作业列表 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String

    来自:帮助中心

    查看更多 →

  • 产品优势

    产品优势 基因容器基于Kubernetes智能化基因计算任务调度Spark等加速服务,为您提供低成本高性能的基因测序解决方案。支持对接深度学习框架,方便您深度解读报告。 秒级并发 基因容器利用容器技术的秒级并发能力,可将WGS从30小时缩短至5小时以内,对比同类竞品,使用相同样本的情况下,资源利用率大幅提升。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    等特征,内置遥感解译专用模型,支持用户进行预训练和解译应用。 图18 部分深度学习模型参数 一键式模型部署API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发布、应用监控统计分析,轻松实现AI能力服务化。 图19 模型部署发布平台 平台基于模型

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的A

    来自:帮助中心

    查看更多 →

  • 常用概念

    或真人的外貌、行为特点,并具备一定的智能情感,可以进行交互表达。数字人也可以被称之为虚拟形象、数字虚拟人、虚拟数字人等。数字人的核心技术主要包括计算机视觉、计算机图形学、动作捕捉驱动、图像渲染人工智能等。 服务型数字人:利用深度神经网络进行图像合成、高度拟真的虚拟人。 具备如下特点:

    来自:帮助中心

    查看更多 →

  • 查询并导出课程学习记录

    查询并导出课程学习记录 前提条件 用户具有“查询课程记录”权限 操作步骤: 登录ISDP系统,选择“作业人员->学习管理->学习记录”,查询课程学习记录 点击顶部“课程学习记录”可以在这里对学习记录进行查询以及导出,筛选说明如下表: 图1 课程记录查询条件 表1 “课程学习记录”筛选项

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了