华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    tensorflow深度学习的案例 更多内容
  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    模型权值存放在OBS上完整路径。在keras中通过model.save_weights(filepath)可得到模型权值。 word2vec_path 是 word2vec模型存放在OBS上完整路径。 示例 图片分类预测我们采用Mnist数据集作为流输入,通过加载预训练deeple

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    模型权值存放在OBS上完整路径。在keras中通过model.save_weights(filepath)可得到模型权值。 word2vec_path 是 word2vec模型存放在OBS上完整路径。 示例 图片分类预测我们采用Mnist数据集作为流输入,通过加载预训练deeple

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。D

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    ModelArts平台提供了TensorflowPyTorch,MindSpore等常用深度学习任务基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里软件无法满足您程序运行需求时,您还可以基于这些基础镜像制作一个新镜像并进行训练。 训练作业预置框架介绍 ModelArts中预置的训练基础镜像如下表所示。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络定义与发展,深度学习训练法则,神经网络类型以及深度学习应用 图像识别、 语音识别 机器翻译 编程实验 与图像识别、语言识别、机器翻译编程相关实验操作 本培训为线下面授形式,培训标准时长为6天,每班人数不超过20人。

    来自:帮助中心

    查看更多 →

  • Tensorflow训练

    TFJob可在GPU场景下进行,该场景需要集群中包含GPU节点,并安装合适驱动。 在TFJob中指定GPU资源。 创建tf-gpu.yaml文件,示例如下: 该示例主要功能是基于Tensorflow分布式架构,利用卷积神经网络(CNN)中ResNet50模型对随机生成图像进行训练,每次训练32张图像(ba

    来自:帮助中心

    查看更多 →

  • 概要

    IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型训练,并利用该模型完成简单图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 准备工作

    定”,完成实例创建。 安装TensorFlow 进入CodeArts IDE Online实例,创建并打开一个空白工作目录,命令如下。 mkdir ai-test 使用pip安装TensorFlow等依赖包,为加快安装速度此处安装tensorflow-cpu,命令如下。 1 2

    来自:帮助中心

    查看更多 →

  • 使用模型

    使用模型 用训练好模型预测测试集中某个图片属于什么类别,先显示这个图片,命令如下。 1 2 3 # display a test image plt.figure() plt.imshow(test_images[9]) 图1 显示用以测试图片 查看预测结果,命令如下。 1

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型训练,并利用该模型完成简单图像分类。

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    导入和预处理训练数据集 参考TensorFlow官网教程,创建一个简单图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    别图片中的人物是否佩戴口罩。 垃圾分类 自动学习 图像分类 该案例基于华为云AI开发者社区AI Gallery中数据集资产,让零AI基础开发者完成“图像分类”AI模型训练和部署。 ModelArts Standard开发环境案例 表2 Notebook样例列表 样例 镜像

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    metrics=['accuracy']) # training model.fit(train_images, train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角图标中“数据处理”菜单下面的数据处理算子。 模型包 将模型训练生成模型进行

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    指按某种策略由已知判断推出新判断思维过程。人工智能领域下,由机器模拟人类智能,使用构建神经网络完成推理过程。 在线推理 在线推理是对每一个推理请求同步给出推理结果在线服务(Web Service)。 批量推理 批量推理是对批量数据进行推理批量作业。 昇腾芯片 昇腾芯片又叫

    来自:帮助中心

    查看更多 →

  • ModelArts SDK、OBS SDK和MoXing的区别?

    ython语言ModelArts SDK接口。 详细指导文档:《ModelArts SDK参考》 OBS SDK OBS服务提供SDK,对OBS进行操作。由于ModelArts较多功能需使用OBS中存储数据,用户可使用OBS SDK进行调用,使用OBS存储您数据。 OBS

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    能一次性获得一个满意模型,需要反复调整算法参数、数据,不断评估训练生成模型。 一些常用指标,如准确率、召回率、AUC等,能帮助您有效评估,最终获得一个满意模型。 部署模型 模型开发训练,是基于之前已有数据(有可能是测试数据),而在得到一个满意模型之后,需要将其应

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式、信任边界缺失多个参与方之间建立互信空间; 实现跨组织、跨行业多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)联合数据分析; 支持对接多种深度学习框架( TICS TensorFlow)联邦计算;

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    ModelArts平台提供了TensorflowPyTorch,MindSpore等常用深度学习任务基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里软件无法满足您程序运行需求时,您可以基于这些基础镜像制作一个新镜像并进行训练。 训练基础镜像列表 ModelArts中预置训练基础镜像如下表所示。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    深度诊断E CS 操作场景 ECS支持操作系统深度诊断服务,提供GuestOS内常见问题自诊断能力,您可以通过方便快捷自诊断服务解决操作系统内常见问题。 本文介绍支持深度诊断操作系统版本以及诊断结论说明。 约束与限制 该功能依赖云运维中心(Cloud Operations

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了