主机迁移服务 SMS

主机迁移服务(Server Migration Service)是一种P2V/V2V迁移服务,可以帮您把X86物理服务器,或者私有云、公有云平台上的虚拟机迁移到华为云弹性云服务器(ECS),从而帮助您轻松地把服务器上应用和数据迁移到华为云

当前免费使用,但每个迁移任务会产生少量的临时EVS费用

点击了解详情 

    SSD深度学习迁移训练 更多内容
  • 产品优势

    支持联邦学习,模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期 无需AI技能,支持模型自动生成,业务人员快速使用

    来自:帮助中心

    查看更多 →

  • 极速型SSD V2(公测)

    极速型SSD V2(公测) 极速型SSD V2具备超高IOPS、超高吞吐量和超低时延等多维度的超高性能,专用于对延迟敏感的业务关键型应用程序,具备持续 IOPS 性能。 极速型SSD V2在保持存储容量大小不变的情况下,您可以结合实际业务的需求量,灵活配置云硬盘的IOPS,从而实现云硬盘容量与性能解耦。

    来自:帮助中心

    查看更多 →

  • GPU业务迁移至昇腾训练推理

    GPU业务迁移至昇腾训练推理 基于AIGC模型的GPU推理业务迁移至昇腾指导 GPU推理业务迁移至昇腾的通用指导 基于advisor的昇腾训练性能自助调优指导

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    数据标注对于KPI异常检测非常重要,可以有效提升监督学习训练过程中KPI异常检测的准确率,在无监督学习中对模型做验证评估。 监督学习:使用标注工具对原始数据进行标注,并将标注数据用于训练。用户基于训练结果确认并更新数据标注,将标注数据重新用于训练,提升KPI检测准确率。 无监督学习:使用标注工具对原始数据进

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    LLM大语言模型训练推理场景 样例 场景 说明 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导 预训练、SFT全参微调训练、LoRA微调训练 介绍主

    来自:帮助中心

    查看更多 →

  • 环境准备

    Snt9b单卡规格,配搭ARM处理器,适合深度学习场景下的模型训练和调测 ModelArts提供了面向推理迁移工作的预置镜像,其中包含了最新商用版驱动、昇腾软件开发库,迁移工具链等。预置镜像可以做到即开即用,用户也可以基于预置镜像构建自定义环境内容。 ModelArts支持的昇腾迁移预置镜像如下: 表2

    来自:帮助中心

    查看更多 →

  • 查询作业资源规格

    。查询自动学习资源规格无需此参数。 engine_id 否 Long 指定作业的引擎ID,默认为“0”。查询自动学习资源规格无需此参数。 project_type 否 Integer 项目类型。默认为“0”。 0:非自动学习项目。 1:自动学习,图像分类。 2:自动学习,物体检测。

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    模型训练服务简介 模型训练服务为开发者提供电信领域一站式模型开发服务,涵盖数据预处理、特征提取、模型训练、模型验证、推理执行和重训练全流程。服务提供开发环境和模拟验证环境及ICT网络领域AI资产,包括项目模板、算法、特征分析及处理SDK,帮助开发者提速AI应用开发,保障模型应用效果。

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

  • ModelArts

    txt”文件安装依赖包。 预置训练引擎 开发自定义脚本 使用自定义算法开发模型教程 使用 自定义镜像 开发模型 订阅算法和预置训练引擎涵盖了大部分的训练场景。针对特殊场景,ModelArts支持用户构建自定义镜像用于模型训练。自定义镜像需上传至容器镜像服务(SWR),才能用于云上训练。 由于自定义镜

    来自:帮助中心

    查看更多 →

  • 自动学习项目中,如何进行增量训练?

    自动学习项目中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    重新训练 对第一次训练无影响,仅影响任务重跑。 “是”:清空上一轮的模型结果后重新开始训练。 “否”:导入上一轮的训练结果继续训练。适用于欠拟合的情况。 批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 规格清单(x86)

    TOPS 机器学习深度学习训练推理、科学计算、地震分析、计算金融学、渲染、多媒体编解码。 支持开启/关闭超线程功能,详细内容请参见开启/关闭超线程。 推理加速型 Pi1 NVIDIA P4(GPU直通) 2560 5.5TFLOPS 单精度浮点计算 机器学习深度学习训练推理、科

    来自:帮助中心

    查看更多 →

  • 产品概述

    元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图,提供插件化的区块

    来自:帮助中心

    查看更多 →

  • 数据集

    数据。 导入数据要求 建议训练数据和测试数据分成两个实例,方便算法查找训练或测试数据的位置。 训练数据可以是带标签或者不带标签的数据,测试数据一定是带标签的数据,方便评估模型执行效果。 查看学件项目预置的样例数据 等待学件项目创建完成后,在模型训练服务首页的项目列表中,找到创建完成的学件项目。单击项目所在行的图标。

    来自:帮助中心

    查看更多 →

  • 产品功能

    护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了