过拟合与欠拟合 更多内容
  • 欠拟合的解决方法有哪些?

    的cluster数,正则化参数λ等。 增加训练数据作用不大。 拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。 降低正则化约束。 正则化约束是为了防止模型拟合,如果模型压根不存在过拟合而是拟合了,那么就考虑是否降低正则化参数λ或者直接去除正则化项。 父主题:

    来自:帮助中心

    查看更多 →

  • 如何评估微调后的盘古大模型是否正常

    评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了拟合拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和

    来自:帮助中心

    查看更多 →

  • 数据量和质量均满足要求,为什么盘古大模型微调效果不好

    : 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了拟合拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    保持或接近模型的最佳性能。 拟合 拟合是指为了得到一致假设而使假设变得过度严格,会导致模型产生“以偏概全”的现象,导致模型泛化效果变差。 拟合 拟合是指模型拟合程度不高,数据距离拟合曲线较远,或指模型没有很好地捕捉到数据特征,不能够很好地拟合数据。 损失函数 损失函数(Loss

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止拟合。默认0。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止拟合。默认0。 正则损失计算方式 正则损失计算当前有两种方式。

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    训练轮数是指需要完成全量训练数据集训练的次数。训练轮数越大,模型学习数据的迭代步数就越多,可以学得更深入,但过高会导致拟合;训练轮数越小,模型学习数据的迭代步数就越少,过低则会导致拟合。 您可根据任务难度和数据规模进行调整。一般来说,如果目标任务的难度较大或数据量级很小,可以使用较大的训练轮数,反之可以使用较小的训练轮数。

    来自:帮助中心

    查看更多 →

  • Octopus开发基本流程?

    基于平台上创建好的数据集,可对自定义算法或内置算法进行训练,并对生成的模型进行评估,也可进一步用于预标注。 模型评估 在建模过程中,由于偏差过大导致的模型拟合以及方差过大导致的拟合的存在,因此需要一套评价体系,来评估模型的泛化能力。 在线仿真 仿真即通过软件模拟车辆行驶的路况和场景,不需要真实的环境和硬件

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型总是重复相同的回答

    过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低拟合的风险。 父主题: 大模型微调训练类问题

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型的回答中会出现乱码

    清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型只能回答训练样本中的问题

    ,一旦输入了一个从未出现的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了拟合。请检查训练参数中的 “

    来自:帮助中心

    查看更多 →

  • 功能咨询

    功能咨询 是否支持图像分割任务的训练? 本地导入的算法有哪些格式要求? 拟合的解决方法有哪些? 旧版训练迁移至新版训练需要注意哪些问题? ModelArts训练好后的模型如何获取? AI引擎Scikit_Learn0.18.1的运行环境怎么设置? TPE算法优化的超参数必须是分类特征(categorical

    来自:帮助中心

    查看更多 →

  • 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同

    排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    止模型拟合。这个值越大,删除的路径越多,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1)。 特征删除概率 用于定义特征删除机制中的删除概率。特征删除(也称为特征丢弃)是另一种正则化技术,它在训练过程中随机删除一部分的输入特征,以防止模型拟合。这个值

    来自:帮助中心

    查看更多 →

  • 排序策略

    L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止拟合。默认0。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止拟合。默认0。 正则损失计算方式 正则损失计算当前有两种方式。

    来自:帮助中心

    查看更多 →

  • 实施步骤

    前期咨询:天宽会深入了解客户所在行业的需求,评估业务场景中的具体问题和痛点。通过客户的多轮沟通,明确所需解决的问题及目标,为客户量身定制相应的大模型解决方案。同时,天宽会结合模型的技术特点和行业实践,确定模型落地路径,并规划整个模型开发实施的整体方案。 模型开发训练:根据客户的具体业务需求及数据特性,天宽将

    来自:帮助中心

    查看更多 →

  • 模型训练新建模型训练工程的时候,选择通用算法有什么作用?

    模型训练新建模型训练工程的时候,选择通用算法有什么作用? 通用算法目前包括:分类算法、拟合算法、聚类算法、其他类型。用户选择不同的通用算法类型,并勾选“创建入门模型训练代码”,便可以自动生成对应类型的代码模版。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    取得良好的性能。 开发阶段的关键是平衡模型的复杂度和计算资源,避免拟合,同时保证模型能够在实际应用中提供准确的预测结果。 应用部署:当大模型训练完成并通过验证后,进入应用阶段。主要包括以下几个方面: 模型优化部署:将训练好的大模型部署到生产环境中,可能通过云服务或 本地服务器

    来自:帮助中心

    查看更多 →

  • 二次开发

    以实现的复杂操作;引入数学函数和几何运算,支持更精确的线条拟合;参数式生成模型,将程序做成带输入的命令,分享给平台其他用户使用;灵活组织API,实现系统默认未提供的建模功能;还可以通过查询命令,了解探索内核工作机制。 传统CAD二次开发方式不同,CrownCAD是B/S架构的产

    来自:帮助中心

    查看更多 →

  • 在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类

    练时间短。 增量预训练:在现有预训练模型基础上,利用新数据或特定领域的数据增强模型的能力和性能。允许模型逐步适应新的任务和数据,避免拟合拟合问题,进一步提高模型的泛化能力。 参见表3 调优后模型名称 设置调优后产生的新模型的名称。 参见表3 数据设置 添加数据集 选择存放训

    来自:帮助中心

    查看更多 →

  • 采样方式介绍

    µ=0附近,要想采样得到更边界的点,需要进行大量采样。 图1 蒙特卡洛采样 拉丁超立方采样 拉丁超立方采样的目的是用较少的采样次数,来达到多次蒙特卡洛采样相同的结果,并且涵盖更全面的边界点。 如下图所示,同样对于µ=0,δ=1的正态分布,可以利用更少的采样点得到相同的分布,并且

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    通常,测试数据比例在20%到30%之间较为常见,但具体比例取决于数据集的大小和质量,以及模型的复杂度和训练时间等因素。较小的测试数据比例可能导致拟合,而过大的比例则可能导致拟合。因此,选择适当的测试数据比例对于训练出准确可靠的机器学习模型非常重要。 任务配置 资源池 选择执行任务的资源池,在下拉列

    来自:帮助中心

    查看更多 →

共62条
看了本文的人还看了