华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习过拟合与欠拟合 更多内容
  • 基本概念

    75个英文单词,1token≈1.5汉字。 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • 数据量很少,可以微调吗

    不建议您直接使用该数据进行微调,否则可能会存在如下问题: 拟合:当微调数据量很小时,为了能充分学习这些数据的知识,可能会训练较多的轮次,因而模型会过分记住这些数据,导致无法泛化到其他数据上,最终发生过拟合现象。 拟合:当微调数据量很小时,模型无法有效地调整模型的参数,同时也很

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 数据量和质量均满足要求,为什么微调后的效果不好

    确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了拟合拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 父主题: 典型训练问题和优化策略

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使模型效果最优

    较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减

    来自:帮助中心

    查看更多 →

  • 如何评估微调后的模型是否正常

    评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了拟合拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,回答中会出现乱码

    训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同

    练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,回答总是在重复某一句或某几句话

    过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低拟合的风险。 父主题: 典型训练问题和优化策略

    来自:帮助中心

    查看更多 →

  • 排序策略

    含大量稀疏特征的在线学习的常见优化算法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,只能回答在训练样本中学过的问题

    ,一旦输入了一个从未出现的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了拟合。请检查训练参数中的 “

    来自:帮助中心

    查看更多 →

  • Octopus开发基本流程?

    在建模过程中,由于偏差过大导致的模型拟合以及方差过大导致的拟合的存在,因此需要一套评价体系,来评估模型的泛化能力。 在线仿真 仿真即通过软件模拟车辆行驶的路况和场景,不需要真实的环境和硬件,极大节省训练和测试的成本和时间。Octopus仿真服务预置了智能驾驶、主动安全、危险场景

    来自:帮助中心

    查看更多 →

  • 创建自监督微调训练任务

    decay)的机制,可以有效地防止拟合(overfitting)的问题。 学习率衰减比率 0.00001 0~1 学习率衰减后,最小不会低于的学习率,计算公式为:学习率*学习率衰减比率。 热身比例 0.1 0~1 热身阶段占整体训练的比例。 模型刚开始训练时,如果选择一个较大的学习率,可能导致模型

    来自:帮助中心

    查看更多 →

  • 创建有监督训练任务

    decay)的机制,可以有效地防止拟合(overfitting)的问题。 学习率衰减比率 0.00001 0~1 学习率衰减后,最小不会低于的学习率。计算公式为:学习率*学习率衰减比率。 热身比例 0.1 0~1 热身阶段占整体训练的比例。 模型刚开始训练时,如果选择一个较大的学习率,可能导致模型

    来自:帮助中心

    查看更多 →

  • 功能咨询

    功能咨询 是否支持图像分割任务的训练? 本地导入的算法有哪些格式要求? 拟合的解决方法有哪些? 旧版训练迁移至新版训练需要注意哪些问题? ModelArts训练好后的模型如何获取? AI引擎Scikit_Learn0.18.1的运行环境怎么设置? TPE算法优化的超参数必须是分类特征(categorical

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • 二次开发

    点。 用户基于平台在线开发,快速开始,无需费力搭建开发环境。 使用简单,没有很多编程技能要求。平台支持的语言形式javascript/java很接近,尽量减少额外学习成本。在语言机制上,尽量减少对用户的干扰,使用户能专注于造型逻辑和API调用,而非纠结于语言规则和形式。平台会支

    来自:帮助中心

    查看更多 →

  • 模型训练新建模型训练工程的时候,选择通用算法有什么作用?

    模型训练新建模型训练工程的时候,选择通用算法有什么作用? 通用算法目前包括:分类算法、拟合算法、聚类算法、其他类型。用户选择不同的通用算法类型,并勾选“创建入门模型训练代码”,便可以自动生成对应类型的代码模版。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了