数据仓库服务 GaussDB(DWS)

 

GaussDB(DWS)是一款具备分析及混合负载能力的分布式数据库,支持x86和Kunpeng硬件架构,支持行存储与列存储,提供GB~PB级数据分析能力、多模分析和实时处理能力,用于数据仓库、数据集市、实时分析、实时决策和混合负载等场景,广泛应用于汽车、制造、零售、物流、互联网、金融、政府、电信等行业分析决策系统

 
 

    数据仓库有几种模型 更多内容
  • 获取数据仓库列表信息

    获取 数据仓库 列表信息 功能介绍 获取数据仓库列表 URI GET /v1.0/{project_id}/common/warehouses 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目id,获取方法请参见获取项目ID 表2 Query参数

    来自:帮助中心

    查看更多 →

  • 免费体验GaussDB(DWS)

    使用数据脱敏实现卡号等隐私信息屏蔽 本实验通过创建数据仓库服务 GaussDB (DWS)并使用DWS的数据脱敏功能,针对不同用户设置部分数据列的屏蔽,实现敏感数据脱敏,确保数据安全。 1h 高级特性 冷热数据管理 指导用户创建数据仓库集群GaussDB(DWS),并创建冷热分区表实现

    来自:帮助中心

    查看更多 →

  • 服务启动失败

    服务启动失败的原因比较多样,可能有如下几种情况: AI应用本身问题,无法启动 镜像中配置的端口错误 健康检查配置问题 模型推理代码customize_service.py编写有问题 镜像拉取失败 资源不足,服务调度失败 模型本身问题,无法启动 如果创建模型使用的镜像本身问题,需要在创建模型之前,参考从

    来自:帮助中心

    查看更多 →

  • 使用前必读

    创建云资源,可以将应用程序设计的更接近特定用户的要求,或满足不同地区的法律或其他要求。 可用区 一个可用区是一个或多个物理数据中心的集合,独立的电力和网络,AZ内逻辑上再将计算、网络、存储等资源划分成多个集群。一个Region中的多个AZ间通过高速光纤相连,以满足用户跨AZ构建高可用性系统的需求。

    来自:帮助中心

    查看更多 →

  • 数据库、数据仓库、数据湖、湖仓一体分别是什么?

    为解决企业的数据集成与分析问题,数据仓库之父比尔·恩门于1990年提出数据仓库(Data Warehouse)。数据仓库主要功能是将OLTP经年累月所累积的大量数据,通过数据仓库特有的数据储存架构进行OLAP,最终帮助决策者能快速有效地从大量数据中,分析出有价值的信息,提供决策支持。自从数据仓库出现之后

    来自:帮助中心

    查看更多 →

  • 元数据简介

    按照传统的定义,元数据(Metadata)是关于数据的数据。元数据打通了源数据、数据仓库、数据应用,记录了数据从产生到消费的全过程。元数据主要记录数据仓库模型的定义、各层级间的映射关系、监控数据仓库的数据状态及ETL的任务运行状态。在数据仓库系统中,元数据可以帮助数据仓库管理员和开发人员非常方便地找到其所关心的数据

    来自:帮助中心

    查看更多 →

  • 转换逻辑模型为物理模型

    默认值:application/json;charset=UTF-8 可选,Body体的情况下必选,没有Body体则无需填写和校验。 表3 请求Body参数 参数 是否必选 参数类型 描述 target_model_id 否 String 关系建模的目标模型ID,ID字符串。 注意:当使用已经存在的tar

    来自:帮助中心

    查看更多 →

  • 图片

    数据绑定:通过建立不同类型的视图模型,将各种数据源和组件的返回值或者属性值进行关联,实现动态数据效果。 值绑定:设置组件绑定的数据模型,数据模型一般以下几种。更多介绍,请参见值绑定。 自定义:由用户自定义的前端模型,可以在模型树上快速创建自定义字段。 对象:由后台对象模型映射创建,支持选择字段。

    来自:帮助中心

    查看更多 →

  • 模型测试

    单击界面左下角的“异常检测模型测试”,弹出“异常检测模型测试”代码框,如图3所示。 “是否绘图”请选择“是”,可以通过绘图查看模型的测试验证效果。 图3 异常检测模型测试 单击“异常检测模型测试”代码框左侧的图标。等待模型测试完成。 模型测试打印结果示例,如图4所示。截图仅为模型测试打印结果的一部分,具体以实际打印结果为准。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 硬盘故障检测模板会预置模型训练工程,无需关注,下面会提供端到端的操作流程,帮助用户快速熟悉模型训练界面操作。 单击菜单栏中的“模型训练”,进入模型训练首页。 可以看到预置的“hardisk_detect”模型训练工程,这是硬盘故障检测模板预置的模型训练工程,本次不使用。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型 模型推理

    来自:帮助中心

    查看更多 →

  • 测试模型

    测试模型 用测试数据测试模型的泛化能力。训练数据可以是带标签或者不带标签的数据,测试数据一定是带标签的数据,方便评估模型执行效果。 单击“训练模型”左下方的“测试模型”,新增“测试模型”内容。 参数配置均保持默认值。 单击“测试模型”代码框左侧的图标,进行模型评估。 模型测试效果会通过表格的形式在下方展示。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 特征和算法确定后,可以开始训练模型。 训练模型 单击“模型选择”左下方的“训练模型”。 新增“训练模型”内容,如图1所示。 图1 训练模型 单击“训练模型”代码框左侧的图标,进行模型训练。 模型训练完成后,界面下方展示模型的评估效果。 第一列内容的含义如下所示: 0:标注为0的所有样本。可以理解为标签。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 单击菜单栏中的“模型管理”,可在“模型管理”界面查看打包好的模型,如图1所示。 图1 模型管理 父主题: 使用模型训练服务快速训练算法模型

    来自:帮助中心

    查看更多 →

  • 发布模型

    发布模型 逻辑实体创建完成后,必须创建对应的物理实体,才可以发布逻辑模型。 操作步骤 在数据服务左侧导航,选择“工具箱>数据开发>数据建模”。 在左侧导航中,单击展开分层,选择一个分层。 在需要发布的逻辑实体对应的“操作”列下,单击>。 在“提示”对话框中单击“确认”。 在“确认”对话框中单击“确定”。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 使用特征工程处理后生成的训练集进行模型训练。 创建联邦学习训练任务(简易编辑器) 单击简易编辑器界面右上角的“训练”。 进入“训练任务配置”界面,如图1所示。 图1 训练任务配置 参数说明,如表1所示。 表1 参数配置 区域 参数名称 参数描述 任务说明 任务名称 训练任务的名称。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测学件服务

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型包 编辑模型包 上架模型包至AI市场 发布推理服务 模型包完整性校验 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 归档模型

    是否生成本地模型包:请保持默认值关闭。即默认不在当前JupyterLab特征工程项目中生成本地模型包。仅归档模型包,供模型管理页面新建模型包使用。 是否生成本地metadata.json:请保持默认值关闭。 单击归档cell代码框左侧的图标,完成模型归档。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 训练模型

    选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。 父主题: 通用文本分类工作流

    来自:帮助中心

    查看更多 →

  • 评估模型

    评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在 自然语言处理

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了