弹性云服务器 ECS

 

弹性云服务器(Elastic Cloud Server)是一种可随时自助获取、可弹性伸缩的云服务器,帮助用户打造可靠、安全、灵活、高效的应用环境,确保服务持久稳定运行,提升运维效率

 
 

    云服务器训练神经网络 更多内容
  • 训练模型

    0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “语种”指文本数据的语言种类。 确认信息后,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在 自然语言处理 套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“无监督车牌检测工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 图1 训练模型 在“模型训练”页面,选择“训练模型”和“车辆场景”。

    来自:帮助中心

    查看更多 →

  • 训练服务

    训练服务 训练算法 模型评测 编译镜像 编译任务 父主题: 自动驾驶云服务全流程开发

    来自:帮助中心

    查看更多 →

  • Finetune训练

    Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh

    来自:帮助中心

    查看更多 →

  • LoRA训练

    LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train

    来自:帮助中心

    查看更多 →

  • Controlnet训练

    启动SD1.5训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd /home/ma-user/diffusers sh diffusers_controlnet_train.sh Step3 启动sdxl训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd

    来自:帮助中心

    查看更多 →

  • 预训练

    训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。

    来自:帮助中心

    查看更多 →

  • 设置训练故障优雅退出

    设置训练故障优雅退出 使用场景 随着模型规模和数据集的急剧增长,需要利用大规模的训练训练大规模的神经网络。在大规模集群分布式训练时,会遇到集群中某个芯片、某台 服务器 故障,导致分布式训练任务失败。优雅退出是指中断的训练任务支持自动恢复,并可以在上一次训练中断的基础上继续训练,而不用从头开始。

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • 模型训练

    GP”算法,选取十个超参组合,依次进行模型训练。 图2 超参优化配置 单击“开始训练”,回到代码编辑界面。 可通过单击界面右上角的“训练任务”,查看训练任务状态。如图3所示。 单击训练任务下方的图标,下方会展示模型训练日志、运行结果日志、运行图和Tensorboard窗口。 图3 训练任务 模型训练结束后,单击

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 特征和算法确定后,可以开始训练模型。 训练模型 单击“模型选择”左下方的“训练模型”。 新增“训练模型”内容,如图1所示。 图1 训练模型 单击“训练模型”代码框左侧的图标,进行模型训练。 模型训练完成后,界面下方展示模型的评估效果。 第一列内容的含义如下所示: 0:标注为0的所有样本。可以理解为标签。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 使用特征工程处理后生成的训练集进行模型训练。 创建联邦学习训练任务(简易编辑器) 单击简易编辑器界面右上角的“训练”。 进入“训练任务配置”界面,如图1所示。 图1 训练任务配置 参数说明,如表1所示。 表1 参数配置 区域 参数名称 参数描述 任务说明 任务名称 训练任务的名称。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测学件服务

    来自:帮助中心

    查看更多 →

  • 训练模型

    “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 确认信息后,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。

    来自:帮助中心

    查看更多 →

  • 训练模组

    训练模组 场景描述 训练模组的接口。 接口方法 POST 接口URI https:// 域名 /apiaccess/C CS QM/rest/ccisqm/v1/semantickeywordtraining/trainTags,例如域名是service.besclouds.com 请求说明

    来自:帮助中心

    查看更多 →

  • 训练算法

    训练算法 添加自定义算法 添加自定义算法流程为“初始化训练算法 > 选择训练算法文件 > 上传训练算法文件”。具体操作步骤如下: 在左侧菜单栏中单击“训练服务 > 算法管理”。 单击“新建训练算法”,填写算法基本信息。 图1 新建训练算法 名称:包含中英文、数字、“_”“-”,不得超过64个字符。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自

    来自:帮助中心

    查看更多 →

  • 预训练

    统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权

    来自:帮助中心

    查看更多 →

  • 预训练

    nizer文件,具体请参见训练tokenizer文件说明。 Step2 创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd

    来自:帮助中心

    查看更多 →

  • 预训练

    统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了