基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    推理和机器学习 更多内容
  • 使用AI原生应用引擎完成模型调优

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • (停止维护)Kubernetes 1.13版本说明

    CCE集群支持创建裸金属节点(容器隧道网络) 支持AI加速型节点(搭载海思Ascend 310 AI处理器),适用于图像识别、视频处理、推理计算以及机器学习等场景 支持配置docker baseSize 支持命名空间亲和调度 支持节点数据盘划分用户空间 支持集群cpu管理策略 支持集群下的节点跨子网(容器隧道网络)

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery在线推理服务部署模型

    。 表2 推理效果的指标介绍 指标名称 指标说明 CPU使用率 在推理服务启动过程中,机器的CPU占用情况。 内存使用率 在推理服务启动过程中,机器的内存占用情况。 显卡使用率 在推理服务启动过程中,机器的NPU/GPU占用情况。 显存使用率 在推理服务启动过程中,机器的显存占用情况。

    来自:帮助中心

    查看更多 →

  • ModelArts Standard使用流程

    Standard的自动学习可以帮助用户零代码构建AI模型。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩部署模型。开发者无需专业的开发基础编码能力,只需上传数据,通过自动学习界面引导简单操作即可完成模型训练部署。具体请参见自动学习简介。 Standar

    来自:帮助中心

    查看更多 →

  • GPU加速型

    GPU加速型云服务器包括G系列P系列两类。其中: G系列:图形加速型弹性云服务器,适合于3D动画渲染、CAD等。 P系列:计算加速型或推理加速型弹性云服务器,适合于深度学习、科学计算、CAE等。 为了保障GPU加速型云服务器高可靠、高可用高性能,该类型云服务器的公共镜像中会默认预置带GPU监控的CES

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    ModelArts Standard自动学习案例 表1 自动学习样例列表 样例 对应功能 场景 说明 口罩检测 自动学习 物体检测 基于AI Gallery口罩数据集,使用ModelArts自动学习的物体检测算法,识别图片中的人物是否佩戴口罩。 垃圾分类 自动学习 图像分类 该案例基于华为云AI开发者社区AI

    来自:帮助中心

    查看更多 →

  • Kubeflow部署

    Kubeflow诞生于2017年,Kubeflow项目是基于容器Kubernetes构建,旨在为数据科学家、机器学习工程师、系统运维人员提供面向机器学习业务的敏捷部署、开发、训练、发布管理平台。它利用了云原生技术的优势,让用户更快速、方便地部署、使用管理当前最流行的机器学习软件。 目前Kubeflow 1

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数验证集,参数估计、最大似然估计贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    本方案支持的软件配套版本依赖包获取地址如表2所示。 表2 软件配套版本获取地址 软件名称 说明 下载地址 AscendCloud-6.3.906-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    /...目录下,查找到summmary目录,有txtcsv两种保存格式。总体打分结果参考txtcsv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)GPU打分结果(mmlu取值47)进行对比,误差在1以内(计算公式:(47-46

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    以内(计算公式:(47-46.6) < 1)认为NPU精度GPU对齐。NPUGPU的评分结果社区的评分不能差太远(小于10)认为分数有效。 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908)

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    以内(计算公式:(47-46.6) < 1)认为NPU精度GPU对齐。NPUGPU的评分结果社区的评分不能差太远(小于10)认为分数有效。 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    /...目录下,查找到summmary目录,有txtcsv两种保存格式。总体打分结果参考txtcsv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    ...目录下,查找到summmary目录,有txtcsv两种保存格式。 总体打分结果参考txtcsv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)GPU打分结果(mmlu取值47)进行对比,误差在1以内(计算公式:(47-46

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    的精度验证,建议使用开源MME数据集工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。 配置需要使用的NPU卡,例如:实际使用的是第1张第2张卡,此处填写为“0,1”,以此类推。

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    的精度验证,建议使用开源MME数据集工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。 配置需要使用的NPU卡,例如:实际使用的是第1张第2张卡,此处填写为“0,1”,以此类推。

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    本方案支持的软件配套版本依赖包获取地址如表2所示。 表2 软件配套版本获取地址 软件名称 说明 下载地址 AscendCloud-6.3.911-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。

    来自:帮助中心

    查看更多 →

  • Standard推理部署

    Standard推理部署 ModelArts Standard推理服务访问公网方案 端到端运维ModelArts Standard推理服务方案 使用自定义引擎在ModelArts Standard创建模型 使用大模型在ModelArts Standard创建模型部署在线服务 第三方推理框架迁移到ModelArts

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    /...目录下,查找到summmary目录,有txtcsv两种保存格式。总体打分结果参考txtcsv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    ...目录下,查找到summmary目录,有txtcsv两种保存格式。 总体打分结果参考txtcsv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)GPU打分结果(mmlu取值47)进行对比,误差在1以内(计算公式:(47-46

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了