深度学习模型部署 更多内容
  • 使用ModelArts Standard部署模型并推理预测

    使用ModelArts Standard部署模型并推理预测 推理部署使用场景 创建模型 创建模型规范参考 将模型部署为实时推理作业 将模型部署为批量推理服务 管理ModelArts模型 管理同步在线服务 管理批量推理作业

    来自:帮助中心

    查看更多 →

  • 功能介绍

    针对客户的特定场景需求,定制垂直领域的 语音识别 模型,识别效果更精确。 录音文件识别 对于录制的长语音进行识别,转写成文字,提供不同领域模型,具备良好的可扩展性,支持热词定制。 产品优势 高识别率 基于深度学习技术,对特定领域场景的语音识别进行优化,识别率达到业界领先。 稳定可靠 成功

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理是 可信智能计算服务 提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。 父主题: 可信联邦学习作业

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • OPS04-02 采用持续部署模型

    采用持续部署模型部署出问题时,通过使用持续部署模型来实现尽早发现问题,减少对最终用户的影响。 金丝雀部署是持续部署的常见模型,通过一小群内部或外部用户首先部署新功能,当新版本没有问题后,陆续部署到更大的组,直到所有用户群体都运行新版本。 另一种常见的部署模型是蓝绿部署,通过部

    来自:帮助中心

    查看更多 →

  • 查看科学计算大模型部署任务详情

    查看科学计算大模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看

    来自:帮助中心

    查看更多 →

  • 场景介绍

    用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 什么是图像搜索

    图像搜索 Image Search ,又称为多媒体搜索)基于深度学习与图像识别技术,是一套开箱即用的场景化搜索服务,支持图像等数据的管理和搜索,提供多种通用预置场景的搜索能力,并支持低成本、高敏捷的定制化服务,为用户提供安全、可靠、快速、准确的一键部署场景化内容搜索需求。 图像搜索服务以开放API(Application

    来自:帮助中心

    查看更多 →

  • 使用模型

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务和模型包。 创建联邦学习工程步骤如下。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    联邦学习&重训练,保障模型应用效果 支持联邦学习模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期

    来自:帮助中心

    查看更多 →

  • ModelArts自动学习与ModelArts PRO的区别

    PRO是一款为企业级AI应用打造的专业开发套件。用户可根据预置工作流生成指定场景模型,无需深究底层模型开发细节。ModelArts PRO底层依托ModelArts平台提供数据标注、模型训练、模型部署等能力。也可以理解过增强版的自动学习,提供行业AI定制化开发套件,沉淀行业知识,让开发者聚焦自身业务。 父主题:

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    创建模型微调任务 模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 ModelArts Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。

    来自:帮助中心

    查看更多 →

  • 部署上线

    部署上线 自动学习部署上线是将模型部署为什么类型的服务? 父主题: Standard自动学习

    来自:帮助中心

    查看更多 →

  • ModelArts Standard使用流程

    创建训练作业 管理模型 编写推理代码和配置文件 针对您生成的模型,建议您按照ModelArts提供的模型包规范,编写推理代码和配置文件,并将推理代码和配置文件存储至训练输出位置。 模型包规范介绍 创建模型 将训练完成的模型导入至ModelArts创建为模型,方便将模型部署上线。 创建模型

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspee

    来自:帮助中心

    查看更多 →

  • 创建预测分析项目

    可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    面向熟悉代码编写和调测的AI工程师 ModelArts Standard推理部署 使用Standard一键完成商超商品识别模型部署 本案例以“商超商品识别”模型为例,介绍从AI Gallery订阅模型,一键部署到ModelArts Standard,并进行在线推理预测的体验过程。 面向AI开发零基础的用户

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了