部署机器学习模型 更多内容
  • 部署模型

    建模步骤 创建部署模型。 创建新的部署模型图或者在已有的部署模型图中进行画图设计,如果部署模型场景较多,可根据实际情况将内容进行拆分,按实际部署场景创建多个部署模型图。 建立交付元素与部署元素的部署关系。 从工具箱拖入部署元素创建到部署模型图中,描述部署场景,再将交付模型中定义的打包交付

    来自:帮助中心

    查看更多 →

  • 部署模型

    部署模型的基础构造型与自定义构造型元素才认定为部署元素)。 在部署模型图上创建出来的部署元素; 引用到部署模型中的部署元素(包含关联空间中的引用的部署元素); 如何检查 查询部署模型图内元素类型为架构方案配置构造型的所有元素,查询基于模型图构出的部署模型架构树。 正确示例 每个部署元素都有连线关系和上下级关系(包含关系)。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。 Mod

    来自:帮助中心

    查看更多 →

  • 概述

    文件,服务才能读取到;服务运行作业生成的结果、日志文件也会输出到数据目录,供用户查看、获取。 文件管理 文件管理是 可信智能计算 服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时

    来自:帮助中心

    查看更多 →

  • Standard模型部署

    Standard模型部署 ModelArts Standard提供模型服务管理能力,支持多厂商多框架多功能的镜像和模型统一纳管。 通常AI模型部署和规模化落地非常复杂。 例如,智慧交通项目中,在获得训练好的模型后,需要部署到云、边、端多种场景。如果在端侧部署,需要一次性部署到不同规格

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 方案概述

    nGraph访问ModelArts在线服务和OBS桶。 方案优势 快速构建机器学习模型 AI开发平台 ModelArts可以快速创建和训练机器学习模型,无需任何编码。使模型开发和训练过程更加便捷和高效。 开源和定制化 该解决方案是开源的,用户可以免费用于商业用途,并且还可以在源码基础上进行定制化开发。

    来自:帮助中心

    查看更多 →

  • 方案概述

    lArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务 IAM上创建一个委托,用于授权FunctionGraph访问ModelArts在线服务和OBS桶。 方案优势 快速构建机器学习模型 AI开发平台ModelArts可以快速创建和训练机器学习模型,无需任何编码。使模型开发和训练过程更加便捷和高效。

    来自:帮助中心

    查看更多 →

  • 网银机器人部署

    网银机器部署 安装机器人环境 管理中心注册与租户申请 管理中心-创建机机账号 管理中心-创建执行器(机器人) 执行器-连接管理中心 管理中心-脚本创建 管理中心-任务创建 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 自动学习中部署上线是将模型部署为什么类型的服务?

    自动学习部署上线是将模型部署为什么类型的服务? 自动学习部署上线是将模型部署为在线服务,您可以添加图片或代码进行服务测试,也可以使用URL接口调用。 部署成功后,您也可以在ModelArts管理控制台的“部署上线 > 在线服务”页面中,查看到正在运行的服务。您也可以在此页面停止服务或删除服务。

    来自:帮助中心

    查看更多 →

  • 将已有模型部署为模型服务

    将已有模型部署模型服务 模型需要部署成功后才可正式提供模型服务部署成功后,可以对模型服务进行模型调测,并支持在创建Agent时使用或通过模型调用接口调用。 本文介绍如何将微调后的模型或部分平台预置的模型部署模型服务。 前提条件 已购买推理单元资源,具体购买方法请参见购买AI原生应用引擎包年包月资源。

    来自:帮助中心

    查看更多 →

  • 开源模型怎么部署?

    开源模型怎么部署? 开源模型部署需要购买推理单元,具体操作如下: 在AI原生应用引擎的左侧导航栏选择“资产中心”,选择“大模型”页签。 将鼠标光标移至待部署的开源模型卡片上,单击“部署”。 在“创建部署服务”页面,可以查看到需要几个推理单元,单击“购买推理单元资源”。 图1 创建部署服务

    来自:帮助中心

    查看更多 →

  • 部署NLP大模型

    部署NLP大模型 创建NLP大模型部署任务 查看NLP大模型部署任务详情 管理NLP大模型部署任务 父主题: 开发盘古NLP大模型

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    ,方便后续扩展。 model_name name 模型的实例名,每个模型对应AiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。

    来自:帮助中心

    查看更多 →

  • GS

    ,方便后续扩展。 model_name name 模型的实例名,每个模型对应AiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。

    来自:帮助中心

    查看更多 →

  • 部署模型为在线服务

    方式访问在线服务或者通过APP认证的方式访问在线服务。 针对您部署上线的服务,您可以在服务详情页面的“调用指南”中,了解本服务的输入参数,即上文提到的输入请求类型。 图1 查看服务的调用指南 调用指南中的输入参数取决于您选择的模型来源: 如果您的元模型来源于自动学习或预置算法,其

    来自:帮助中心

    查看更多 →

  • 使用MaaS部署模型服务

    Studio”进入ModelArts Studio大模型服务平台。 在ModelArts Studio左侧导航栏中,选择“模型部署”进入服务列表。 单击“部署模型服务”进入部署页面,完成创建配置。 表1 部署模型服务 参数 说明 服务设置 服务名称 自定义部署模型服务的名称。 支持1~64位,以中文

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了