AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习中的样本数量 更多内容
  • 批量更新团队标注样本的标签

    14:图像目标框面积占比与训练数据集特征分布存在较大偏移。 15:图像目标框边缘化程度与训练数据集特征分布存在较大偏移。 16:图像目标框亮度与训练数据集特征分布存在较大偏移。 17:图像目标框清晰度与训练数据集特征分布存在较大偏移。 18:图像目标框堆叠程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型只能回答训练样本中的问题

    为什么微调后盘古大模型只能回答训练样本问题 当您将微调模型部署以后,输入一个已经出现在训练样本问题,模型生成结果很好,一旦输入了一个从未出现过数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致,建议您依次排查: 训练参数设置:您可以通过绘制

    来自:帮助中心

    查看更多 →

  • ALM-303046919 设备上学习到的ARP表项数量超过了设定的阈值

    all命令确定哪些接口ARP表项数量较多,对于ARP表项数量较多接口,执行display arp interface命令查看指定接口下ARP表项,检查这些ARP表项是否是用户需要。 ARP表项是用户需要=>5。 如果ARP表项不是用户需要,在确保业务不受影响前提下,可以执行reset

    来自:帮助中心

    查看更多 →

  • 查询样本对齐结果

    。通过调用接口获取用户Token接口获取。 X-Language 是 String 根据自己偏好语言来获取不同语言返回内容,zh-cn或者en_us Content-Type 是 String 发送实体MIME类型 响应参数 状态码: 200 表4 响应Body参数 参数 参数类型 描述

    来自:帮助中心

    查看更多 →

  • 产品功能

    业,根据合作方已提供数据,编写相关sql作业并获取您所需要分析结果,同时能够在作业运行保护数据使用方数据查询和搜索条件,避免因查询和搜索请求造成数据泄露。 可信联邦学习 可信联邦学习 可信智能计算 服务提供在保障用户数据安全前提下,利用多方数据实现联合建模,曾经被称为联邦机器学习。

    来自:帮助中心

    查看更多 →

  • 执行作业

    体支持参数请参考表1。 表1 常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度

    来自:帮助中心

    查看更多 →

  • 查询单个样本详情

    查询单个样本详情 根据样本ID查询数据集中指定样本详细信息。 dataset.get_sample_info(sample_id) 示例代码 根据ID查询数据集中样本详细信息 from modelarts.session import Session from modelarts

    来自:帮助中心

    查看更多 →

  • 执行样本对齐

    stream.count 否 Integer 本次作业每批流数量,最大值232次方-1 he.dict.enable 否 Boolean 同态加密是否使用字典 save.batch.count 否 Integer 存文件分批数量,最大值232次方-1 max.result.file

    来自:帮助中心

    查看更多 →

  • 查询单个样本信息

    14:图像目标框面积占比与训练数据集特征分布存在较大偏移。 15:图像目标框边缘化程度与训练数据集特征分布存在较大偏移。 16:图像目标框亮度与训练数据集特征分布存在较大偏移。 17:图像目标框清晰度与训练数据集特征分布存在较大偏移。 18:图像目标框堆叠程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 批量更新样本标签

    14:图像目标框面积占比与训练数据集特征分布存在较大偏移。 15:图像目标框边缘化程度与训练数据集特征分布存在较大偏移。 16:图像目标框亮度与训练数据集特征分布存在较大偏移。 17:图像目标框清晰度与训练数据集特征分布存在较大偏移。 18:图像目标框堆叠程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    precision:精确率 被模型预测为某个分类所有样本,模型正确预测样本比率,反映模型对负样本区分能力。 accuracy:准确率 所有样本,模型正确预测样本比率,反映模型对样本整体识别能力。 f1:F1值 F1值是模型精确率和召回率加权调和平均,用于评价模型好坏,当F1较高时说明模型效果较好。

    来自:帮助中心

    查看更多 →

  • 应用场景说明

    标准影像作为模型训练样本数据。实际操作,我们通过对单个影像实例进行查看和对比,在界面上设置“AI训练”或“学习案例”,以标识出正样本。 专家经验库按不同采集来源图片与视频进行分类,分为任务经验库和问题经验库(问题经验库暂未实现),其中任务经验库分为检查单、任务与告警三种归类方式。

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    被用户标注为某个分类所有样本,模型正确预测为该分类样本比率,反映模型对正样本识别能力。 precision:精确率 被模型预测为某个分类所有样本,模型正确预测样本比率,反映模型对负样本区分能力。 accuracy:准确率 所有样本,模型正确预测样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    登录CBS控制台。 在智能问答机器人列表,选择“操作”列“规格修改”。 图1 规格修改 依据使用需求修改机器规格。 图2 修改问答机器人规格 父主题: 智能问答机器

    来自:帮助中心

    查看更多 →

  • 提交验收任务的样本评审意见

    提交验收任务样本评审意见 功能介绍 提交验收任务样本评审意见。 调试 您可以在 API Explorer 调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/dat

    来自:帮助中心

    查看更多 →

  • 查询智能标注的样本列表

    14:图像目标框面积占比与训练数据集特征分布存在较大偏移。 15:图像目标框边缘化程度与训练数据集特征分布存在较大偏移。 16:图像目标框亮度与训练数据集特征分布存在较大偏移。 17:图像目标框清晰度与训练数据集特征分布存在较大偏移。 18:图像目标框堆叠程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 学习任务

    自由模式:可以不按顺序学习课件,可随意选择一个开始学习 解锁模式:设置一个时间,按时间进程解锁学习,解锁模式暂时不支持添加线下课和岗位测评 图4 选择模式 阶段任务 图5 阶段任务 指派范围:选择该学习任务学习具体学员 图6 指派范围1 图7 指派范围2 设置:对学习任务进行合格标准、奖励等设置

    来自:帮助中心

    查看更多 →

  • 课程学习

    登录手机app,点击“我”进入个人信息页面 图4 个人中心入口 点击“个人中心”并进入,在个人中心页面,点击“我学习”后面的箭头,进入“我学习 页面。 图5 个人中心页面(我岗位、我技能) 在“我学习页面,点击每个具体课程卡片,进入到课程详情页面。可以按“进行、已完成,必修,选修”过滤,可以按课程标题搜索

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少情况,建议每个标签样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 查询样本列表

    14:图像目标框面积占比与训练数据集特征分布存在较大偏移。 15:图像目标框边缘化程度与训练数据集特征分布存在较大偏移。 16:图像目标框亮度与训练数据集特征分布存在较大偏移。 17:图像目标框清晰度与训练数据集特征分布存在较大偏移。 18:图像目标框堆叠程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了