华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习中的样本数量 更多内容
  • 概述

    多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出模型权重在某一数据集上预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少情况,联合多个参与者共同样本不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    据安全前提下,利用多方数据实现联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者数据特征重叠较多,而样本ID重叠较少情况,联合多个参与者具有相同特征多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出模型权重在某一数据集上的预测输出效果。

    来自:帮助中心

    查看更多 →

  • 获取目标库分组中的目标数量

    获取目标库分组目标数量 功能介绍 获取目标库分组目标数量,仅支持好望协议设备,使用该接口需要设备安装了目标算法,NVR800需要切换到人卡模式,SDC直连需要开启目标库对比 URI GET /v1/{user_id}/targets/count 表1 路径参数 参数 是否必选

    来自:帮助中心

    查看更多 →

  • 查看/标识/取消/下载样本

    样本下方/ 标记学习案例/取消学习案例样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方/。 单个下载样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方或单击样本,在样本详情页面单击样本 按按键告警归类 单击对应“告警样本

    来自:帮助中心

    查看更多 →

  • 最新动态

    相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少情况,联合多个参与者共同样本不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用,升级、回滚是一个常见场景, TICS

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    数量 定义XGBoost算法决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量 定义每个特征切分点数量数量越多,准确率越高,计算时间越长。取值范围为5~10的整数。

    来自:帮助中心

    查看更多 →

  • 查询集合中数字资产数量

    查询集合数字资产数量 查询指定资产集合下,已铸造数字资产数量。 仅专享版支持该接口调用。 调用方法 TotalSupply(collectionIndex string) (int64, error) 参数说明 参数 类型 说明 collectionIndex String 必填参数,集合唯一标识符,不能重复。

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景合规实践 该示例模板对应合规规则说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护版本 cce CC

    来自:帮助中心

    查看更多 →

  • 查询集合中数字资产数量

    查询集合数字资产数量 查询指定资产集合下,已铸造数字资产数量。 仅专享版支持该接口调用。 调用方法 public long totalSupply(String collectionIndex) throws Exception 参数说明 参数 类型 说明 collectionIndex

    来自:帮助中心

    查看更多 →

  • 批量添加样本

    14:图像目标框面积占比与训练数据集特征分布存在较大偏移。 15:图像目标框边缘化程度与训练数据集特征分布存在较大偏移。 16:图像目标框亮度与训练数据集特征分布存在较大偏移。 17:图像目标框清晰度与训练数据集特征分布存在较大偏移。 18:图像目标框堆叠程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 统计文件夹中的对象数量和大小

    (可选)单击“统计信息”下方“清除记录”,可清除当前列表展示统计信息。 (可选)单击“统计信息”下方“导出”,可导出当前列表展示全部统计信息或选中统计信息。 (可选)在统计列表上方选择框,可根据属性筛选统计信息。 使用命令行工具obsutil 统计文件夹对象数量 obsuti

    来自:帮助中心

    查看更多 →

  • 批量删除样本

    批量删除样本 根据样本ID列表批量删除数据集中样本。 dataset.delete_samples(samples) 示例代码 批量删除数据集中样本 from modelarts.session import Session from modelarts.dataset import

    来自:帮助中心

    查看更多 →

  • 批量删除样本

    是否删除源文件,对非文本类型数据集有效(文本类型数据集因为是导入整个文本文件,故删除一条样本不会对源文本有影响)。可选值如下: false:不删除源文件(默认值) true:删除源文件(注意:此操作可能影响已使用这些文件数据集版本或其他数据集,导致页面展示异常或者训练/推理异常)

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少情况,建议每个标签样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 样本管理

    样本管理 查询样本列表 查询单个样本详情 批量删除样本 父主题: 数据管理

    来自:帮助中心

    查看更多 →

  • 样本对齐

    样本对齐 单击右下角下一步进入“样本对齐”页面,这一步是为了进行样本碰撞,过滤出共有的数据交集,作为后续步骤输入。企业A需要选择双方样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后数据量及对齐结果路径。 父主题: 使用TI CS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 查询单个智能标注样本的信息

    14:图像目标框面积占比与训练数据集特征分布存在较大偏移。 15:图像目标框边缘化程度与训练数据集特征分布存在较大偏移。 16:图像目标框亮度与训练数据集特征分布存在较大偏移。 17:图像目标框清晰度与训练数据集特征分布存在较大偏移。 18:图像目标框堆叠程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 批量更新团队标注样本的标签

    14:图像目标框面积占比与训练数据集特征分布存在较大偏移。 15:图像目标框边缘化程度与训练数据集特征分布存在较大偏移。 16:图像目标框亮度与训练数据集特征分布存在较大偏移。 17:图像目标框清晰度与训练数据集特征分布存在较大偏移。 18:图像目标框堆叠程度与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 产品功能

    业,根据合作方已提供数据,编写相关sql作业并获取您所需要分析结果,同时能够在作业运行保护数据使用方数据查询和搜索条件,避免因查询和搜索请求造成数据泄露。 可信联邦学习 可信联邦学习 可信智能计算 服务提供在保障用户数据安全前提下,利用多方数据实现联合建模,曾经被称为联邦机器学习。

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    模型微调是指调整大型语言模型参数以适应特定任务过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现场景。这是通过在与任务相关微调数据集上训练模型来实现,所需微调量取决于任务复杂性和数据集大小。在深度学习,微调用于改进预训练模型性能。 支持将平台资产中心预置部分模型作

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了