AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习测试样本数量 更多内容
  • 测试机器人

    测试机器人 操作步骤 选择“配置中心>机器人管理>流程配置”,进入流程配置界面。 选择“智能机器人”。在需要测试的接入码最后一列单击“呼叫测试”。 在弹出的测试对话窗口中单击“开始呼叫”,开始测试机器人。 图1 测试机器人 父主题: 配置一个预约挂号机器人(任务型对话机器人)

    来自:帮助中心

    查看更多 →

  • 排序策略

    单击选择特征工程排序样本预处理生成的训练数据所在的OBS路径。 即特征工程“排序样本预处理”结果保存路径下具体的训练文件路径。 测试数据的obs路径 单击选择特征工程排序样本预处理生成的测试数据所在的OBS路径。 即特征工程“排序样本预处理”结果保存路径下具体的测试文件路径。 特征值数量统计文件

    来自:帮助中心

    查看更多 →

  • 概述

    同特征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 批量添加样本

    否 Integer 数据类型。可选值如下: 0:OBS桶(默认值) 1: GaussDB (DWS)服务 2: DLI 服务 3:RDS服务 4: MRS 服务 5:AI Gallery 6:推理服务 schema_maps 否 Array of SchemaMap objects 表格数据对应的schema映射信息。

    来自:帮助中心

    查看更多 →

  • 最新动态

    样本对齐支持PSI算法 纵向联邦作业中支持对两方数据集进行样本对齐,在不泄露数据隐私的情况下计算出双方共有的数据,并将共有的数据作为后续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机

    来自:帮助中心

    查看更多 →

  • 查看/标识/取消/下载样本

    单击对应的“采集样本数量”、“AI训练样本数”或“学习案例样本数”列的数值,“可以进入到样本清单明细页面,查看当前的样本明细 标识AI训练/取消AI训练样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方的/ 标记学习案例/取消学习案例样本:在“样本库”、“AI训

    来自:帮助中心

    查看更多 →

  • 批量删除样本

    批量删除样本 根据样本的ID列表批量删除数据集中的样本。 dataset.delete_samples(samples) 示例代码 批量删除数据集中的样本 from modelarts.session import Session from modelarts.dataset import

    来自:帮助中心

    查看更多 →

  • 批量删除样本

    批量删除样本 功能介绍 批量删除样本。 调试 您可以在 API Explorer 中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dataset

    来自:帮助中心

    查看更多 →

  • 管理机器人测试用例

    管理机器测试用例 前提条件 您已经参照配置一个预约挂号机器人(任务型对话机器人)完成流程和机器人的配置。 管理测试用例有什么用? 自动测试可以使运维人员使用自动测试文本来批量测试对话,来验证机器人的回复是否满足预期,减少验证语料是否正确的工作量。 操作步骤 选择“配置中心>机器

    来自:帮助中心

    查看更多 →

  • 样本管理

    样本管理 查询样本列表 查询单个样本详情 批量删除样本 父主题: 数据管理

    来自:帮助中心

    查看更多 →

  • 样本对齐

    样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 训练模型

    型。 在“参数配置”填写“学习率”、“训练轮次”和“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch Size),指一次训练所抓取的数据样本数量,影响训练速度及模型优化效果。

    来自:帮助中心

    查看更多 →

  • 查询样本对齐结果

    000+00:00", "result_ext" : null } 状态码 状态码 描述 200 查询样本对齐结果成功 401 操作无权限 500 内部服务器错误 父主题: 联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20) 训练轮数 1 10 20 测试集准确率 (%)

    来自:帮助中心

    查看更多 →

  • 查询样本列表

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

    来自:帮助中心

    查看更多 →

  • 管理样本库

    删除操作无法撤销,请谨慎操作。 编辑样本:在样本库管理页面,单击对应样本操作栏中的“编辑”,即可修改样本的各项参数。 删除样本:在样本库管理页面,单击对应样本操作栏中的“删除”,即可删除样本。 注意,被脱敏算法引用的样本不能被删除。若要删除已引用的样本,需要先修改引用关系,再进行删除操作。

    来自:帮助中心

    查看更多 →

  • 解析Manifest文件

    CE。指明该对象用于训练、评估、测试、推理,如果没有给出该字段,则使用者自行决定如何使用该对象。 inference_loc String 当此Manifest文件由推理服务生成时会有该字段,表示推理输出的结果文件位置。 id String 样本ID。 source_type String

    来自:帮助中心

    查看更多 →

  • 产品功能

    询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算节点 数据参与

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了