华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习测试样本数量 更多内容
  • 评估模型

    “整体评估”左侧显示当前模型的版本、标签数量、验证集数量。 “整体评估”右侧显示当前模型的评估参数值,包括“精准率”、“召回率”、“F1值”。您可以在上方单击选择“评估范围”,单击“添加对比版本”。 图1 整体评估 详细评估 在“模型评估”页面,您可以搜索查看测试集中数据模型预测结果。 “详

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    操作步骤 在开始训练之前,需要完成数据标注,然后再开始模型的自动训练。 在新版自动学习页面,单击项目名称进入运行总览页面,单击数据标注节点的“实例详情”进入数据标注页面,完成数据标注。 返回新版自动学习页面,单击数据标注节点的“继续运行”,然后等待工作流按顺序进入训练节点。 模型将

    来自:帮助中心

    查看更多 →

  • 敏感检测

    选择此次敏感检测任务需要检测的敏感项,支持全选。 可选敏感项:可选敏感项下方展示敏感项列表,包含各个敏感项名称和样例。 在“检测测试”的右侧,单击,展开检测测试内容。 在左侧框中输入待检测的文字内容(自定义),单击“测试”,系统会根据用户配置的检测敏感项,快速进行敏感内容检测,并在检测结果框中展示敏感检测信息。

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    续运行”按钮之前,请确保已标注的文本符合要求。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览,单击“数据标注”节点的“实例详情”进入“数据标注”页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的“继续运行”,然后等待工作流按顺序进入训练节点。

    来自:帮助中心

    查看更多 →

  • 训练预测分析模型

    训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。

    来自:帮助中心

    查看更多 →

  • 创建自监督微调训练任务

    型的复杂度和性能进行调整。同时,批大小还与学习率相关。学习率是指每次更新参数时,沿着梯度方向移动的步长。一般来说,批大小和学习率成正比。如果批大小增大,学习率也相应增大;如果批大小减小,那么学习率也应减小。 训练轮数 1 1~50 完成全部训练数据集训练的次数。 学习率 0.0001

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同

    了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。 父主题: 典型训练问题和优化策略

    来自:帮助中心

    查看更多 →

  • 敏感检测

    单击“检测”,可以查看数据文件的字段分隔情况。 “敏感项”区域选择此次敏感检测任务需要检测的具体敏感内容。支持全选。 单击“检测测试”左侧的图标,展开检测测试内容。 在左侧框中输入待检测的文字内容(自定义),单击“测试”,系统会根据用户配置的检测敏感项,快速进行敏感内容检测,并在检测结果框中展示敏感检测信息。 配

    来自:帮助中心

    查看更多 →

  • 提交样本量或者时域分析任务

    提交样本量或者时域分析任务 功能介绍 管理员在数据集详情页面提交样本量或者时域探索任务。 URI URI格式 PUT /softcomai/datalake/v1.0/datasets/metadata 参数说明 无。 请求 请求样例 PUT https://telcloud.huawei

    来自:帮助中心

    查看更多 →

  • 查询单个智能标注样本的信息

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

    来自:帮助中心

    查看更多 →

  • 批量更新团队标注样本的标签

    String 样本ID。 sample_type 否 Integer 样本类型。可选值如下: 0:图像 1:文本 2:语音 4:表格 6:视频 9:自由格式 sample_usage 否 String 样本用处。可选值如下: TRAIN:训练 EVAL:验证 TEST:测试 INFERENCE:推理

    来自:帮助中心

    查看更多 →

  • 训练模型

    别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 训练模型

    别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    译专用模型,支持用户进行预训练和解译应用。 图18 部分深度学习模型参数 一键式模型部署和API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发布、应用监控和统计分析,轻松实现AI能力服务化。 图19 模型部署发布平台 平台基于模型训练结果,面向典型

    来自:帮助中心

    查看更多 →

  • 查询应用数量

    查询应用数量 功能介绍 该接口用于用户查询应用使用的数量信息。 调试 您可以在 API Explorer 中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/msgsms/apps-count

    来自:帮助中心

    查看更多 →

  • 查询样本量或者时域分析任务状态

    查询样本量或者时域分析任务状态 功能介绍 根据数据集ID查询数据集的样本量或时域分析任务状态。 URI URI格式 GET /softcomai/datalake/v1.0/datasets/metadata/status/{datasetId} 参数说明 参数名 是否必选 参数类型

    来自:帮助中心

    查看更多 →

  • 变更分区数量

    变更分区数量 参见初始化DIS客户端的操作初始化一个DIS客户端实例。 配置参数如下: 1 2 streamname = "" #已存在的running状态通道名 target_partition_count =”3” #变更后的数量值 配置好以上参数,执行change

    来自:帮助中心

    查看更多 →

  • 变更分区数量

    变更分区数量 参考初始化DIS客户端的操作初始化一个DIS客户端实例,实例名称为dic。 其中,“streamName”的配置值要与开通DIS通道中“通道名称”的值一致,“endpoint”,“ak”,“sk”,“region”,“projectId”信息请参见获取认证信息。 1

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现图像分类

    来自:帮助中心

    查看更多 →

  • 时序预测

    分割”,并设置“测试数据分割量”,即从训练集的数据尾部,分割出去的数据比例,示例为“0.2”。如果用户在数据集界面同时上传了训练集和测试集,可以选择“从数据集读入”,并相应选择“测试数据集”和“测试数据集实例”即可。 单击“加载数据”左侧的图标,加载训练集和测试集。 运行完成后,

    来自:帮助中心

    查看更多 →

  • 训练模型

    别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了