AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习训练集和验证集 更多内容
  • 修订记录

    数据集详情界面优化,更新新建数据导入数据。 模型训练章节,针对AutoML自动机器学习,输出场景化资料。 模型管理界面优化,更新模型管理。 删除模型管理界面的云端推理入口,更新云端推理框架。 2020-08-17 根据最新的模型训练服务,更新“模型训练服务简介”章节描述。 新建数据导入数据章节

    来自:帮助中心

    查看更多 →

  • 产品术语

    理SDK,帮助开发者提速AI应用开发,保障模型应用效果。 训练数据 用于训练模型的数据实例。 Y 验证数据 模型验证的数据

    来自:帮助中心

    查看更多 →

  • 如何将某些图片划分到验证集或者训练集?

    输入“训练比例”,数值只能是0~1区间内的数。设置好“训练比例”后,“验证比例”自动填充。“训练比例”加“验证比例”等于1。 “训练比例”即用于训练模型的样本数据比例;“验证比例”即用于验证模型的样本数据比例。“训练验证比例”会影响训练模板的性能。 父主题: Standard数据管理

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    导入预处理训练数据 参考TensorFlow官网的教程,创建一个简单的图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    步骤一:创建微调数据 数据是模型微调的基础,AI原生应用引擎统一纳管训练模型的数据,将分散的数据进行集中式管理,从而节省了数据收集管理的成本。 在AI原生应用引擎的左侧导航栏选择“知识中心 > 微调数据”。 在“微调数据”页面,单击右上角“创建微调数据”。 在“创建微调

    来自:帮助中心

    查看更多 →

  • 基本概念

    AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据进行特征处理。 在旧

    来自:帮助中心

    查看更多 →

  • 概述

    仅支持“主机存储”“OBS存储”两种存储方式。前一种是指计算节点交互的数据存储在计算节点所在机器上,后一种是计算节点交互的数据存储在部署时选择的OBS桶中。 数据目录:计算节点部署时选择的存储路径,用于 TICS 服务的数据外部交互。用户只有在目录中放置数据等文件,服务才能读取

    来自:帮助中心

    查看更多 →

  • 方案概述

    该解决方案会部署如下资源: 创建两个对象存储服务 OBS桶,一个用于存储训练数据及ModelArts算法、推理脚本、配置文件、模型数据。另一个用于存储数据及数据预测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测故障分析结果。 使用 函数工作流 Func

    来自:帮助中心

    查看更多 →

  • 方案概述

    该解决方案会部署如下资源: 创建两个对象存储服务 OBS桶,一个用于存储训练数据及ModelArts算法、推理脚本、配置文件、模型数据;另一个用于存储数据及数据预测结果。 使用AI开发平台ModelArts,用于机器学习模型训练,预测汽车价值评估结果。 使用函数工作流 Fu

    来自:帮助中心

    查看更多 →

  • 数据集版本发布失败

    标签的数据少于2张,会导致数据切分失败。建议检查您的标注信息,保证标注多标签的图片,超过2张。 数据切分后,训练验证包含的标签类别不一样。出现这种情况的原因:多标签场景下时,做随机数据切分后,包含某一类标签的样本均被划分到训练,导致验证无该标签样本。由于这种情况出现

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    输入部署计算节点时设置的“登录用户名”“密码”。 图3 前往计算节点 选择界面左侧“数据管理>数据预处理”,单击“创建”,可输入作业名称、描述及数据,单击保存。若当前选不到目标数据,可查看该数据是否已参与其他的预处理作业。 目标数据需要对所选字段的分布类型进行严格定义。

    来自:帮助中心

    查看更多 →

  • 模型训练

    单击新增cell左侧的图标,加载两份higgs数据分别作为训练测试,如图3所示。 图3 加载训练 单击界面右上角的图标,选择“数据处理 > 数据 > 加载数据”。 新增“加载数据”内容。设置如下参数取值,其余参数保持默认值即可。 数据:从下拉框中选择“higgs”。 数据实例:从下拉框中选择“higgs_train_10k”。

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    数据标注对于KPI异常检测非常重要,可以有效提升监督学习训练过程中KPI异常检测的准确率,在无监督学习中对模型做验证评估。 监督学习:使用标注工具对原始数据进行标注,并将标注数据用于训练。用户基于训练结果确认并更新数据标注,将标注数据重新用于训练,提升KPI检测准确率。 无监督学习:使用标注工具对原始数据进

    来自:帮助中心

    查看更多 →

  • 功能介绍

    功能介绍 数据 模型训练服务统一的数据管理菜单,可本地导入10G以内大数据文件,或对接数据服务,导入已订阅的数据。且支持在线查看代码、图片、音视频等多种格式的文件内容。 特征工程 特征工程是模型训练的必要过程,可以实现数据的特征组合、筛选转换,最大限度的从数据集中提取关键特征,供模型训练使用。

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    系统还支持打包训练模型,用于创建训练服务、模型验证,或者发布到应用市场。模型训练包包括编排配置文件、模型文件等。详细的模型管理操作请参见模型管理。 模型训练页面说明 “模型训练”页面列出了已有的训练工程、训练服务超参优化服务的列表信息,如图1所示。在该页面,用户可以查看训练工程训练服务的创建信息,新建、

    来自:帮助中心

    查看更多 →

  • 训练数据集预处理说明

    出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据预处理参数说明 微调包含SFTLoRA微调。数据预处理脚本参数说明如下: --input:原始数据的存放路径。 --output-prefix:处理后的数据保存路径+数据名称(例如:alpaca_gpt4_data)

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数验证,参数估计、最大似然估计贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 创建用户和权限集

    在左侧导航栏中,选择“多账号权限 > 权限”,进入“权限”页面。 单击页面右上方的“创建权限”,进入创建权限页面。 图5 创建权限 在“基本信息”页签中配置权限的基本信息,配置完成后,单击“下一步”。 图6 配置基本信息 表2 权限基本信息 参数 描述 名称 权限的名称。 自定义,不可与其他权限集名称重复。

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    计算节点管理 同一个空间中的用户,在使用 可信计算 服务时(联邦分析联邦机器学习),需要部署计算节点,接入己方数据,作为可信计算服务的输入,通过执行联邦分析联邦机器学习作业后,最终拿到结果。 计算节点以容器的形式部署,支持云租户部署边缘节点部署,用户可根据数据源的现状,采用合适的计算节点部署方案。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    纵向联邦作业XGBoost算法只支持两方参与训练训练作业必须选择一个当前计算节点发布的数据。 作业创建者的数据必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法FiBiNET算法。 纵向联邦学习分为五个步骤:数据选择、样本对

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了