AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习训练集 更多内容
  • 概述

    征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 修订记录

    新增“学件”章节。 数据简介章节新增“DatasetService数据”介绍。 新建数据和导入数据章节新增“支持超大文件(10G)上传”操作指导。 训练任务页面优化,对应刷新模型训练截图。 推理服务API接口优化,对应修改推理服务。 2020-06-16 模型训练新增MindSpore样例体验,对应刷新模型训练。

    来自:帮助中心

    查看更多 →

  • 方案概述

    该解决方案会部署如下资源: 创建两个对象存储服务 OBS桶,一个用于存储训练数据及ModelArts算法、推理脚本、配置文件、模型数据。另一个用于存储数据及数据预测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测故障分析结果。 使用 函数工作流 Func

    来自:帮助中心

    查看更多 →

  • 方案概述

    该解决方案会部署如下资源: 创建两个对象存储服务 OBS桶,一个用于存储训练数据及ModelArts算法、推理脚本、配置文件、模型数据;另一个用于存储数据及数据预测结果。 使用AI开发平台ModelArts,用于机器学习模型训练,预测汽车价值评估结果。 使用函数工作流 Fu

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 已发布区域:北京四、北京二

    来自:帮助中心

    查看更多 →

  • 基本概念

    AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据进行特征处理。 在旧

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    选择界面左侧“数据管理>数据预处理”,单击“创建”,可输入作业名称、描述及数据,单击保存。若当前选不到目标数据,可查看该数据是否已参与其他的预处理作业。 目标数据需要对所选字段的分布类型进行严格定义。处理评估/预测数据前建议先使用训练数据进行预处理,以确保当数据处理达到目标需求。 图4 创建数据预处理作业

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 最新动态

    纵向联邦作业中支持对两方数据进行样本对齐,在不泄露数据隐私的情况下计算出双方共有的数据,并将共有的数据作为后续特征选择、模型训练的数据。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较

    来自:帮助中心

    查看更多 →

  • 产品术语

    算法、特征分析及处理SDK,帮助开发者提速AI应用开发,保障模型应用效果。 训练数据 用于训练模型的数据实例。 Y 验证数据 模型验证的数据

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    步骤一:创建微调数据 数据是模型微调的基础,AI原生应用引擎统一纳管训练模型的数据,将分散的数据进行集中式管理,从而节省了数据收集和管理的成本。 在AI原生应用引擎的左侧导航栏选择“知识中心 > 微调数据”。 在“微调数据”页面,单击右上角“创建微调数据”。 在“创建微调

    来自:帮助中心

    查看更多 →

  • GS

    ine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    ine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。 Mo

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    GeneralPretrainHandler:使用预训练的alpaca数据。 GeneralInstructionHandler:使用微调的alpaca数据。 MOSSMultiTurnHandler:使用微调的moss数据。 MBS 4 表示流水线并行中一个micro batch所处理的样

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    轻量级深度学习:增加扩展问并使用该模型进行训练从而提高问答精准度,扩展问越多,效果提示越明显。 高级版、专业版、旗舰版机器人支持轻量级深度学习。 重量级深度学习:适用于对问答精准度要求很高的场景,扩展问越多,效果提升越明显。 旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    纵向联邦作业XGBoost算法只支持两方参与训练训练作业必须选择一个当前计算节点发布的数据。 作业创建者的数据必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法和FiBiNET算法。 纵向联邦学习分为五个步骤:数据选择、样本对

    来自:帮助中心

    查看更多 →

  • 自动学习为什么训练失败?

    如果OBS路径符合要求,请您按照服务具体情况执行3。 自动学习项目不同导致的失败原因可能不同。 图像识别训练失败请检查是否存在损坏图片,如有请进行替换或删除。 物体检测训练失败请检查数据标注的方式是否正确,目前自动学习仅支持矩形标注。 预测分析训练失败请检查标签列的选取。标签列目前支持离散和连续型数据,只能选择一列。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了