AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习和训练 更多内容
  • SFT全参微调训练

    选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图4 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志性能章节查看SFT微调的日志性能。了解更多ModelArts训练功能,可查看模型开发简介。

    来自:帮助中心

    查看更多 →

  • 训练启动脚本说明和参数配置

    训练启动脚本说明参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data

    来自:帮助中心

    查看更多 →

  • 准备SDC算法

    OS采用轻量级微服务架构,以服务的形式提供基础硬件公共软件能力。您可以基于开放的SDC OS进行算法的代码开发。 接口参考 模型训练 俗称“建模”,指通过分析手段、方法技巧对准备好的数据进行探索分析,发现因果关系、内部联系业务规律,从而得到一个或多个机器学习模型。 一站式开发平台使用指南 算法打包 将

    来自:帮助中心

    查看更多 →

  • 训练启动脚本说明和参数配置

    训练启动脚本说明参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理权重转换的过程。

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    5-ubuntu18.04 CPU算法开发训练基础镜像,包含可以图形化机器学习算法开发调测MLStudio工具,并预置PySpark2.4.5 CPU 否 是 mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04 GPU算法开发训练基础镜像,预置AI引擎MindSpore-GPU

    来自:帮助中心

    查看更多 →

  • 场景介绍

    与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部分参数训练、LoRA、QLoRA,本文档主要支持全参数(Full)LoRA、LoRA+。 LoRA(Low-Rank Adaptation): 这种策略

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    官网。 TensorBoard可视化训练作业,当前仅支持基于TensorFlow、PyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像资源规格选择使用。 前提条件 为了保证训练结果中输出Summary文件,在编写训练脚本时,您需要在脚本中添加收集Summary相关代码。

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    模型训练服务简介 模型训练服务为开发者提供电信领域一站式模型开发服务,涵盖数据预处理、特征提取、模型训练、模型验证、推理执行训练全流程。服务提供开发环境模拟验证环境及ICT网络领域AI资产,包括项目模板、算法、特征分析及处理SDK,帮助开发者提速AI应用开发,保障模型应用效果。

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎基本概念

    行逻辑推理推断。其主要功能是根据已知的事实规则,推导出新的结论或答案。 推理单元常常被用于解决问题、推理、诊断、规划等任务。它可以帮助计算机系统自动推理出一些结论,从而实现智能化的决策行为。推理单元通常包括知识表示、推理机推理策略三个部分。知识表示用于将事实规则以一定的

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    F1值是模型精确率召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    创建训练任务,详细请参考模型训练。 删除训练任务。 模型训练工程描述 训练服务的描述信息,支持单击“”重新编辑。 切换到其他的训练工程、联邦学习工程、训练服务或超参优化服务的模型训练页面中。 模型训练运行环境信息查看配置。 新建训练工程、联邦学习工程、训练服务或超参优化服务。 2(模型训练任务) 根据训练状态快速检索训练任务。

    来自:帮助中心

    查看更多 →

  • 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同

    这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本目标任务不一致或者分布差异较大,则会加剧该现象。

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    导入预处理训练数据集 参考TensorFlow官网的教程,创建一个简单的图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import

    来自:帮助中心

    查看更多 →

  • 如何判断盘古大模型训练状态是否正常

    如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化

    来自:帮助中心

    查看更多 →

  • 自动学习/Workflow计费项

    自动学习/Workflow计费项 计费说明 在ModelArts自动学习Workflow中进行模型训练推理时,会使用计算资源存储资源,会产生计算资源存储资源的累计值计费。具体内容如表1所示。 计算资源费用: 如果运行自动学习作业/Workflow工作流时,使用专属资源池进行模型训练和推理,计算资源不计费。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自

    来自:帮助中心

    查看更多 →

  • 预训练

    选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志性能章节查看SFT微调的日志性能。了解更多ModelArts训练功能,可查看模型开发简介。

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志性能章节查看SFT微调的日志性能。了解更多ModelArts训练功能,可查看模型开发简介。

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了