AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习和训练 更多内容
  • 模型训练服务简介

    集成50+电信领域AI算子&项目模板提升训练效率,降低AI开发门槛,让开发者快速完成模型开发训练 AutoML自动完成特征选择、超参选择及算法选择,提升模型开发效率 高效开发工具JupyterLabWebIDE:交互式编码体验、0编码数据探索及云端编码及调试 联邦学习&重训练,保障模型应用效果

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”“语种”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • 训练模型

    在“参数配置”填写“学习率”、“训练轮次”“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch Size),指一次训练所抓取的数据样本数量,影响训练速度及模型优化效果。 确认信息后,单击“开始训练”。

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志性能章节查看SFT微调的日志性能。了解更多ModelArts训练功能,可查看模型训练。 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3

    来自:帮助中心

    查看更多 →

  • 分布式训练功能介绍

    创建多机多卡的分布式训练(DistributedDataParallel):介绍多机多卡数据并行分布式训练原理代码改造点。 示例:创建DDP分布式训练(PyTorch+GPU):提供了分布式训练调测具体的代码适配操作过程代码示例。 示例:创建DDP分布式训练(PyTorch+N

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建工程 创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务模型包。 创建联邦学习工程步骤如下。

    来自:帮助中心

    查看更多 →

  • 训练模型

    练模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”模型“简介”。 参数配置 在“参数配置”填写“学习率”训练轮次”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志性能章节查看SFT微调的日志性能。了解更多ModelArts训练功能,可查看模型开发简介。

    来自:帮助中心

    查看更多 →

  • 产品术语

    根据安全的重要性划分的等级。分为外部公开、秘密、机密绝密四种状态。 S 数据湖 数据湖是一种在系统或存储库中以自然格式存储数据的方法,它有助于以各种模式结构形式配置数据,通常是对象块或文件。数据湖的主要思想是对企业中的所有数据进行统一存储,从原始数据转换为用于报告、可视化、分析机器学习等各种任务的转换数据。

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    官网。 TensorBoard可视化训练作业,当前仅支持基于TensorFlow、PyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像资源规格选择使用。 前提条件 为了保证训练结果中输出Summary文件,在编写训练脚本时,您需要在脚本中添加收集Summary相关代码。

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    decay)的机制,可以有效地防止过拟合(overfitting)的问题。 学习率衰减比率 学习率衰减后的比率,用于控制训练过程中学习率的下降幅度。经过衰减后,学习率的最低值由初始学习衰减比率决定。其计算公式为:最低学习率 = 初始学习率 * 学习率衰减比率。也就是说,学习率在每次衰减后不会低于这个计算出来的最低值。

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、服务、实例、主机事务等多视角分析关联指标告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • 增量模型训练

    选择。 避免灾难性遗忘:在传统训练中,新数据可能会覆盖旧数据的知识,导致模型忘记之前学到的内容。增量训练通过保留旧知识的同时学习新知识来避免这个问题。 增量训练在很多领域都有应用,比如 自然语言处理 、计算机视觉推荐系统等。它使得AI系统能够更加灵活适应性强,更好地应对现实世界中不断变化的数据环境。

    来自:帮助中心

    查看更多 →

  • 训练服务

    训练服务 训练算法 模型评测 编译镜像 编译任务 父主题: 自动驾驶云服务全流程开发

    来自:帮助中心

    查看更多 →

  • 准备SDC算法

    OS采用轻量级微服务架构,以服务的形式提供基础硬件公共软件能力。您可以基于开放的SDC OS进行算法的代码开发。 接口参考 模型训练 俗称“建模”,指通过分析手段、方法技巧对准备好的数据进行探索分析,发现因果关系、内部联系业务规律,从而得到一个或多个机器学习模型。 一站式开发平台使用指南 算法打包 将

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    5-ubuntu18.04 CPU算法开发训练基础镜像,包含可以图形化机器学习算法开发调测MLStudio工具,并预置PySpark2.4.5 CPU 否 是 mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04 GPU算法开发训练基础镜像,预置AI引擎MindSpore-GPU

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    创建训练任务,详细请参考模型训练。 删除训练任务。 模型训练工程描述 训练服务的描述信息,支持单击“”重新编辑。 切换到其他的训练工程、联邦学习工程、训练服务或超参优化服务的模型训练页面中。 模型训练运行环境信息查看配置。 新建训练工程、联邦学习工程、训练服务或超参优化服务。 2(模型训练任务) 根据训练状态快速检索训练任务。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志性能章节查看SFT微调的日志性能。了解更多ModelArts训练功能,可查看模型开发简介。

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    较大的学习较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习较小的批量大小,防止内存溢出。 这里提供了一些微调参数的建议值说明,供您参考: 表1 微调参数的建议和说明 训练参数 范围 建议值 说明 训练轮数(epoch) 1~50 2/4/8/10 训

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了