华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习fm模型 更多内容
  • 应用场景

    准确率高:基于改进的深度学习算法,基于复杂环境语音审核准确率高。 支持特殊声音识别:支持特殊声音识别模型,如娇喘、呻吟、敏感声纹等。 游戏/社交语音 监测游戏APP / 社交APP中的聊天内容以及语音动态,降低业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,基于复杂环境语音审核准确率高。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    2.0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎基本概念

    将文本转换为机器可以处理的形式,以便进行各种任务,如文本分类、情感分析、机器翻译等。 多模态模型 多模态模型是指能够处理多种类型数据(如文本、图像、音频等)的机器学习模型。这些模型可以将不同类型的数据进行融合和联合分析,从而实现更全面的理解和更准确的预测。多模态模型的应用非常广泛

    来自:帮助中心

    查看更多 →

  • 对话机器人

    智能问答机器人简称 QABot ,可提供智能对话引擎,通过对机器人知识的配置,可以让机器人回答不同的问题。配置后,您可以通过API接口的方式接入已有的对话应用,比如智能客服、通讯软件、公众号等,以实现智能对话的功能。 在使用智能问答机器人之前,需要您先购买智能问答机器人,目前提供的智能问答机

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的服务器后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 更新MaaS模型服务的模型权重

    更新MaaS模型服务模型权重 场景描述 在使用大型模型进行推理任务时,需定期对模型进行迭代和优化。为适应模型权重的更新和迭代,必须对已部署的服务执行相应的升级操作,以确保服务使用的是最新模型。 ModelArts Studio大模型服务平台支持滚动升级模型权重,允许模型服务在运行时

    来自:帮助中心

    查看更多 →

  • 技术模型

    的接口。 Service 服务,是指具备明确的业务特征,由一个或多个关联紧密的微服务组成,可直接面向客户/用户进行打包、发布、部署、运维的软件单元。用户从业务特征安装部署、监控运维的角度感知到服务的存在。规模上介于Subsystem与FM之间的逻辑架构模型元素。Service的功能更加内聚,对外依赖少,接口稳定。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 模型归档

    是否是Spark环境:请保持默认值关闭。 是否生成本地模型包:请保持默认值关闭。即默认不在当前JupyterLab算法工程项目中生成本地模型包。仅归档模型包,供模型管理页面新建模型包使用。 是否生成本地metadata.json:请保持默认值关闭。 单击归档cell代码框左侧的图标,完成模型归档。 父主题: JupyterLab开发平台

    来自:帮助中心

    查看更多 →

  • 模型验证

    模型验证 模型验证简介 创建验证服务 创建验证任务 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 模型训练

    单击界面左下角的“异常检测模型训练”,弹出“异常检测模型训练”代码框,如图3所示。 请根据实际情况配置各个模型参数取值。 也可以单击界面右上角的,在弹出的算子框中,选择“学件 > 多层嵌套异常检测学件 > 异常检测模型训练”,添加“异常检测模型训练”代码框。 图3 异常检测模型训练 单击“异

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 创建资产模型 删除资产模型 添加属性信息 修改属性信息 删除属性信息 添加分析任务 修改分析任务 删除分析任务 父主题: 资产建模

    来自:帮助中心

    查看更多 →

  • 模型仓库

    模型仓库 在菜单栏中,选择“模型仓库”。 进入“模型仓库”界面。界面以列表的形式,展示了当前租户下面已成功创建推理服务模型包列表和模型包详细信息,如图1所示。 图1 模型仓库 界面说明如表1所示。 表1 模型仓库界面说明 区域 参数 参数说明 1 支持通过模型包名称快速检索模型包。

    来自:帮助中心

    查看更多 →

  • 训练模型

    据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。 父主题: 零售商品识别工作流

    来自:帮助中心

    查看更多 →

  • 训练模型

    请见选择数据。 训练模型 在“应用开发>模型训练”页面,配置训练参数,开始训练模型。 输出路径 模型训练后,输出的模型和数据存储在OBS的路径。单击输入框,在输出路径的对话框中选择OBS桶和文件夹,然后单击“确定”。 预训练模型 当前服务提供安全帽检测预置模型“saved_model

    来自:帮助中心

    查看更多 →

  • 评估模型

    Pro控制台选择“HiLens安全帽检测”可训练模板新建技能,并训练模型,详情请见训练模型。 评估模型 工作流会用测试数据评估模型,在“应用开发>评估模型”页面,查看评估结果。 模型评估 图1 模型评估 训练模型的版本、标签数量、测试集数量。单击“下载评估结果”,可保存评估结果至本地。

    来自:帮助中心

    查看更多 →

  • 训练模型

    据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。 父主题: 热轧钢板表面缺陷检测工作流

    来自:帮助中心

    查看更多 →

  • 评估模型

    已在视觉套件控制台选择“热轧钢板表面缺陷检测工作流”新建应用,并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 评估模型 模型评估 “模型评估”下侧显示当前模型的版本、标签数量、验证集数量。 评估参数对比

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了