tensorflow图像分类 更多内容
  • ModelArts中常用概念

    架,构建于TensorFlowPyTorchMXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用于访问OBS服务,和具体的AI引擎解耦,在M

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    面向熟悉代码编写和调测的AI工程师 ModelArts Standard自动学习 使用Standard自动学习实现垃圾分类 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“图像分类AI模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • Notebook中快速使用MoXing

    Notebook”开发页面。 在JupyterLab的“Launcher”页签下,以TensorFlow为例,您可以单击TensorFlow,创建一个用于编码的文件。 图1 选择不同的AI引擎 文件创建完成后,系统默认进入“JupyterLab”编码页面。 图2 进入编码页面 调用mox

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    简介。 图1 自动学习操作流程 图2 Workflow运行流程 项目类型介绍 图像分类 图像分类项目,是对图像进行分类。需要添加图片并对图像进行分类标注,完成图片标注后开始模型训练,即可快速生成图像分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检

    来自:帮助中心

    查看更多 →

  • 选择数据

    选择数据 在使用通用图像分类工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入基于通用图像分类工作流创建的其他应用中已创建的数据集。 新建训练数据集 导入已有数据集 前提条件 通用图像分类工作流支持将服

    来自:帮助中心

    查看更多 →

  • 如何关闭Mox的warmup

    如何关闭Mox的warmup 问题现象 训练作业mox的Tensorflow版本在运行的时候,会先执行“50steps” 4次,然后才会开始正式运行。 warmup即先用一个小的学习率训练几个epoch(warmup),由于网络的参数是随机初始化的,如果一开始就采用较大的学习率会出现数值不稳定的问题,这是使用warm

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • 使用ModelArts PyCharm插件调试训练ResNet50图像分类模型

    失败。 在KeyPair中选择该Notebook实例对应的密钥,选择完成后,单击Apply进行远程Notebook一键配置,等待一段时间后,会出现重启IDE的确认框,单击确认重启,重启后即可生效。 图13 ToolKit连接Notebook配置界面 KeyPair: 需要选择保存

    来自:帮助中心

    查看更多 →

  • 模型推理代码编写说明

    "images":"base64 encode image" } TensorFlow的推理脚本示例 TensorFlow MnistService示例如下。更多TensorFlow推理代码示例请参考TensorflowTensorflow2.1。 推理代码 1 2 3 4 5 6

    来自:帮助中心

    查看更多 →

  • 使用ModelArts VSCode插件调试训练ResNet50图像分类模型

    odels/official/cv/resnet/”下创建train_notebook.py, 复制代码至train_notebook.py, 运行train_notebook.py,进行训练作业提交。 # train_notebook.py # 导入ModelArts SDK的

    来自:帮助中心

    查看更多 →

  • 模型转换失败怎么办?

    om”格式的模型上传文件包含caffe模型文件“.caffemodel”和“.prototxt”和配置文件“.cfg”,或tensorflow的“.pb”模型文件和配置文件“.cfg”。 确认待转换的模型算子是否为“.om”模型支持的TensorFlowCaffe算子边界 并非所有模型

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Kubeflow

    在CCE集群中部署使用Kubeflow Kubeflow部署 Tensorflow训练 使用Kubeflow和Volcano实现典型AI训练任务 父主题: 批量计算

    来自:帮助中心

    查看更多 →

  • 部署服务

    部署服务 评估模型后,就可以部署服务,开发通用图像分类的专属应用,此应用用于识别输入图像的类型,也可以直接调用对应的API和SDK识别。 前提条件 已在“ 工业智能体 控制台>工业AI开发>工业AI开发工作流”选择“通用图像分类工作流”新建应用,并评估模型,详情请见评估模型。 由于部

    来自:帮助中心

    查看更多 →

  • 在开发环境中部署本地服务进行调试

    端根据AI引擎创建容器,较耗时;本地Predictor部署较快,最长耗时10s,可用以测试模型,不建议进行模型的工业应用。 当前版本支持部署本地服务Predictor的AI引擎为:“XGBoost”、“Scikit_Learn”、“PyTorch”、“TensorFlow”和“S

    来自:帮助中心

    查看更多 →

  • Standard数据管理

    Standard数据管理提供了一套高效便捷的管理和标注数据框架。支持图片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、 自然语言处理 、音视频分析等AI项目场景。 ModelArts Standard数据管理模块重构中,当前能力不做演进,将结

    来自:帮助中心

    查看更多 →

  • 创建模型不同方式的场景介绍

    目前不支持的AI引擎,可以通过 自定义镜像 的方式将编写的模型镜像导入ModelArts,创建为模型,用于部署服务。 从AI Gallery订阅模型:ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,您可订阅AI Gallery上的模型进行AI体验学习。 推理支持的AI引擎

    来自:帮助中心

    查看更多 →

  • 模型包结构介绍

    vice.py依赖的文件可以直接放model目录下 Custom模型包结构,与您自定义镜像中AI引擎有关。例如自定义镜像中的AI引擎TensorFlow,则模型包采用TensorFlow模型包结构。 父主题: 创建模型规范参考

    来自:帮助中心

    查看更多 →

  • 创建智能标注作业

    图片列表。 图像分类标注作业 在“待确认”页面查看标签是否准确,勾选标注准确的图片,然后单击“确认”完成智能标注结果的确认。确认完成后的图片将被归类至“已标注”页面下。 针对标为“难例”的图片,您可以根据实际情况判断,手工修正标签。详细操作及示例请参见•针对“图像分类”数据集。 物体检测标注作业

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现零代码AI开发

    使用自动学习实现零代码AI开发 自动学习简介 使用自动学习实现图像分类 使用自动学习实现物体检测 使用自动学习实现预测分析 使用自动学习实现声音分类 使用自动学习实现文本分类 使用窍门

    来自:帮助中心

    查看更多 →

  • 数据标注场景介绍

    业,进行多人协同标注。 人工标注 对于不同类型的数据,用户可以选择不同的标注类型。当前ModelArts支持如下类型的标注作业: 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。

    来自:帮助中心

    查看更多 →

  • 从OBS导入数据到数据集场景介绍

    不同类型数据集支持的导入方式 数据集类型 标注类型 OBS目录导入 Manifest文件导入 图片 图像分类 支持 可以导入未标注或已标注数据 已标注数据格式规范:图像分类 支持 可以导入未标注或已标注数据 已标注数据格式规范:图像分类 物体检测 支持 可以导入未标注或已标注数据 已标注数据格式规范:物体检测

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了