tensorflow测试代码 更多内容
  • 测试代码

    测试代码 Python扩展支持使用unittest和pytest框架进行测试。CodeArts可以帮助您配置框架集成,并提供专用的“测试”视图,让您能够方便地识别和运行测试。 以下是一个如何创建和运行一个unittest测试的示例。 创建一个测试对象,也就是新建一个名为 “inc_dec

    来自:帮助中心

    查看更多 →

  • Tensorflow训练

    Tensorflow训练 Kubeflow部署成功后,使用ps-worker的模式来进行Tensorflow训练就变得非常容易。本节介绍一个Kubeflow官方的Tensorflow训练范例,您可参考TensorFlow Training (TFJob)获取更详细的信息。 创建MNIST示例

    来自:帮助中心

    查看更多 →

  • Tensorflow算子边界

    Tensorflow算子边界 “.om”模型支持的Tensorflow算子边界如表1所示。 表1 TensorFlow算子边界 序号 Python API C++ API 边界 1 tf.nn.avg_pool AvgPool Type:Mean 【参数】 value:4-D t

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    使用Tensorflow训练神经网络 应用场景 当前主流的大数据、AI训练和推理等应用(如TensorflowCaffe)均采用容器化方式运行,并需要大量GPU、高性能网络和存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。本文将演示在云容器

    来自:帮助中心

    查看更多 →

  • 性能测试

    性能测试 性能测试是一种软件测试形式,通过性能测试工具模拟正常、峰值及异常负载等状态下对系统的各项性能指标进行测试的活动,它关注运行系统在特定负载下的性能,可帮助你评估系统负载在各种方案中的功能,涉及系统在负载下的响应时间、吞吐量、资源利用率和稳定性,以帮助确保系统性能满足基线要

    来自:帮助中心

    查看更多 →

  • 使用TensorFlow进行线性回归

    使用TensorFlow进行线性回归 首先在FunctionGraph页面将tensorflow添加为公共依赖 图1 tensorflow添加为公共依赖 在代码中导入tensorflow并使用 import json import random # 导入 TensorFlow 依赖库

    来自:帮助中心

    查看更多 →

  • 性能测试

    性能测试 如下SQL语句为Q1,访问主表且无谓词条件。 mysql> EXPLAIN SELECT * FROM lineitem LIMIT 10000000,10; +----+-------------+----------+------------+------+----

    来自:帮助中心

    查看更多 →

  • 性能测试

    count(*) from sbtest1 where id/k in (... ...); 性能对比如下表所示: 表1 性能数据 测试方法 开启转换 关闭转换(不适用range_opt) 性能对比 带索引 0.09 2.48 提升26.5倍 父主题: IN谓词转子查询

    来自:帮助中心

    查看更多 →

  • moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune?

    Tune会是一个比较好的选择。 moxing.tensorflow包含所有的接口,对TensorFlow做了优化,里面的实际接口还是TensorFlow的原生接口。 当非MoXing代码中没有Adam名称范围时,需要修改非MoXing代码,在其中增加如下内容: with tf.va

    来自:帮助中心

    查看更多 →

  • 测试

    测试 CodeArts IDE集成了pytest和unittest测试框架,让您可以轻松运行和调试Python测试用例。 将测试框架集成到项目中 运行测试 启动配置 父主题: Python

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    cce-obs-tensorflow persistentVolumeClaim: claimName: cce-obs-tensorflow containers: - name: container-0

    来自:帮助中心

    查看更多 →

  • 性能测试方法

    性能测试方法 本章基于GeminiDB Mongo副本集4.0版本,进行性能测试,具体包括测试环境,测试步骤,以及测试结果。 测试环境 区域:华北-北京四 可用区:可用区一 弹性云服务器 (Elastic Cloud Server,简称E CS ):规格选择通用计算型s3.2xlarge

    来自:帮助中心

    查看更多 →

  • SSB性能测试

    SSB性能测试 SSB测试结果 SSB测试环境 SSB测试过程

    来自:帮助中心

    查看更多 →

  • 性能测试结果

    性能测试结果 本章介绍GeminiDB Redis性能测试结果,根据上述测试方法操作,展示在各种数据模型、测试场景、Workload模型组合下的性能指标。当前性能白皮书仅呈现中小规格并发能力下的数据库性能数据,如需更高的并发能力,可水平或垂直升级数据库规格。 总数据量小于内存场景下的测试数据请参见表1。

    来自:帮助中心

    查看更多 →

  • 性能测试方法

    性能测试方法 本章基于GeminiDB Cassandra,进行性能测试,具体包括测试环境,测试步骤,以及测试结果。 测试环境 区域:华北-北京四 可用区:可用区1+可用区2+可用区3(跨3个可用区部署) 弹性 云服务器 (Elastic Cloud Server,简称ECS):规格选择h3

    来自:帮助中心

    查看更多 →

  • 测试

    测试 简介 申请沙箱环境(可选) 授权沙箱环境 安装已订阅的资产 部署应用到沙箱环境 调测应用/移动端 调测大屏 调测端侧设备 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 测试

    测试 使用此Source Action为具有选定测试框架的生产类生成测试类。 有关测试Java代码的更多详细信息,请参阅调试。 在Create Test对话框中,提供测试类参数: Testing library:选择要使用的测试库。 Class name:提供测试类的名称,并根据选定的框架选择其超类。

    来自:帮助中心

    查看更多 →

  • 性能测试方法

    请求的P9999时延,是非常严格的时延指标,表示99.99%的请求执行时间小于该值,仅少量尾部请求超过该值。 测试步骤 注入测试数据 测试前,生成并注入数据库测试数据。基于测试模型三种类型的分布,对三种数据类型进行如下配置: hash类型 key:34位字符,使用字符串前缀+9位数字

    来自:帮助中心

    查看更多 →

  • 训练性能测试

    训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train <cfgs_yaml_file>

    来自:帮助中心

    查看更多 →

  • 测试

    测试测试框架集成到项目中 Create tests创建测试 运行测试 父主题: Java

    来自:帮助中心

    查看更多 →

  • 如何在Notebook中安装外部库?

    /home/ma-user/anaconda3/bin/activate TensorFlow-1.8 如果使用其他引擎,请将命令中“TensorFlow-1.8”替换为其他引擎的名称及其版本号。 图1 激活环境 在代码输入栏输入以下命令安装Shapely。 pip install Shapely

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了